Finden Sie schnell plasmabeschichten für Ihr Unternehmen: 355 Ergebnisse

Oberflächenbehandlung verschiedenster Materialien durch Plasma und Corona

Oberflächenbehandlung verschiedenster Materialien durch Plasma und Corona

Die Oberflächenbehandlung mittels Plasmabehandlung bietet innovative Lösungen für die in vielen Branchen auftretenden Probleme mit Haftungs- und Benetzungseigenschaften. Mit mehr als 40 Jahren Erfahrung in der Herstellung von qualitativ hochwertigen Oberflächenbehandlungsprodukten für diverse Branchen entwickelt Tantec kontinuierlich neue und innovative Lösungen für einen anspruchsvollen Markt. Als privates, 1974 gegründetes Unternehmen ist die Tantec Group ein führender Hersteller von sowohl standardisierten als auch kundenspezifischen Plasma- und Corona-Systemen für die Oberflächenbehandlung von Kunststoffen und Metallen zur Verbesserung ihrer Adhäsionseigenschaften. Unsere Geräte zur Oberflächenbehandlung werden über unsere eigenen Niederlassungen und mehr als 30 Partner weltweit an Endverbraucher und OEMs in der ganzen Welt vertrieben. Die Tantec Vertrieb GmbH ist dabei Ansprechpartner für den deutschen Markt und steht bei Fragen jederzeit gerne zur Verfügung. Geräte: BottleTEC Eigenschaften: Corona-Vorbehandlung von Flaschenförmigen Gegenständen
Plasmaschneiden

Plasmaschneiden

Leistungsfähige DNC – gesteuerte Plasmaschneidanlagen Unter- und Aufwasserzuschnitte in Abhängigkeit zur Blechdicke Fine-Focus-Zuschnitte durchführbar unter Wasser max. 16.000 x 3.500 x 40 mm auf Wasser max. 16.000 x 3.500 x 150 mm für präzise Zuschnitte in allen Formen mit engen Schneidtoleranzen: Materialdicke Abweichung [mm] 3 bis 60 -0 /+3 61 bis 90 -0 /+5 91 bis 150 -0 /+10
Beschichtung & Oberflächenbehandlung von Shieldings

Beschichtung & Oberflächenbehandlung von Shieldings

Unsere Leistungen im Bereich Beschichtung und Oberflächenbearbeitung umfassen: TWA Flammspritzen Plasmaspritzen Vernickeln Galvanotechnik Strahlverfahren & mechanische Texturierung Korundstrahlen (AIOx und SiO2) Korundstrahlen im Nassverfahren CO2 -Strahlen Eisstrahlen Automatische Texturierung (zum Patent angemeldet) Anodisieren sauber gefärbt Chromsäure Schwefelsauer oxalisch Ceramaze®
Plasmanitrieren

Plasmanitrieren

Zu unserem Leistungsspektrum im Bereich der Oberflächenveredelung gehört das Randschicht-Härten durch das Plasmanitrieren (auch bekannt als Plasma-Härten oder Ionitrieren). Beim diesem Wärmebehandlungsverfahren wird die Oberfläche des Behandlungsgutes mit Stickstoff angereichert. Dabei bilden sich in der Randschicht Eisen- und Sondernitride, die eine Härtesteigerung der Oberflächenrandzone bewirken. Beispiele von erreichbaren Härtewerten: Stahl DIN-Nr. Härten (HRC) Plasmanitrieren (HV1) 1.0503 300-500 9SMnPb28K 1.0718 200-500 16MnCr5 1.7131 500-650 42CrMo4 1.7225 550-650 50CrV4 1.8159 450-600 56NiCrMoV7 1.2714 550-650 X210Cr12 1.2080 900-1200 34CrAIMo51 1.8507 900-1100 X40CrMoV51 1.2344 900-1200 X155CrVM0121 1.2379 900-1250 31CrMoV9 1.8519 800-1000 34CrAINi7 1.8550 900-1200 X210CrW12 1.2436 900-1200 GGG70 500-700 Das eingesetzte ELTROPULS Nitrier-Verfahren basiert auf einer patentierten Pulsplasma-Nitriertechnologie. Vorteile des Pulsplasma-Nitrierverfahrens: - niedrige Behandlungstemperaturen (ab 350 °C bis max. 560 °C) - Verzugsarmes Verfahren (minimale Maß- und Formänderung) - hohe Oberflächenhärte (bei geeigneten Werkstoffen bis zu 1250 HV) - Erhöhung der Verschleißfestigkeit (als Folge der höheren Härte und Festigkeit der Randschicht) - Verbesserung der Gleiteigenschaften (Verminderung des Reibungskoeffizienten) - Verringerung der Adhäsion zum Verschleißpartner - wesentlich glattere Oberflächen als bei anderen Nitrierverfahren (z.B. Gasnitrieren) - hohe Reproduzierbarkeit der Randschichteigenschaften - anwendbar bei allen Stahlsorten sowie Guss- und Sintereisenwerkstoffen - Prozesskombinationen sind möglich (z.B. Nitrieren + Oxidieren) - umweltfreundlich Eine höhere Beständigkeit gegen abrasiven Verschleiß kann durch eine kombinierte Oberflächenbehandlung erzielt werden, die das Plasmanitrieren mit nachfolgender PVD-Beschichtung umfasst. Die durch das Plasmanitrieren gehärteten Oberflächen bieten eine hervorragende Stützgrundlage für die nachfolgende PVD-Hartstoffbeschichtung (siehe Abb. unten).
Laserauftragschweißen/Laserbeschichten

Laserauftragschweißen/Laserbeschichten

Das Laserauftragschweißen/Laserbeschichten ermöglicht ein präzises Aufbringen von metallischen Schichten zum Verschleiß- und Korrosionsschutz oder zur Reparatur und Modifikation von Bauteilen Dabei bearbeiten wir sowohl Einzelteile als auch Serienteile, Innen- sowie Außenkonturen, Neu- und Gebrauchtteile.
Schweißen

Schweißen

Das Laserschweißen ist ein hochproduktiver und zugleich faszinierender Prozess. Obwohl schon verfahrensbedingt hohe Leistungen erzielt werden können, helfen die richtigen Gasgemische, ein weiteres Potential auszuschöpfen. Das Laserschweißen bietet im Vergleich zu den konventionellen Schweißverfahren eine konzentrierte Wärmeführung, sehr geringen Verzug und wesentlich höhere Laserschweißgeschwindigkeiten. Ein Großteil der Laserschweißungen kommt ohne Zusatzmaterial aus, solange es nicht aus Gründen der Spaltüberbrückbarkeit oder der Metallurgie zwingend notwendig ist.
Faserverbundtechnologie

Faserverbundtechnologie

Composite World realisiert komplexe Projekte sowie Einzel- und Kleinserienfertigung für alle Belange der Faserverbundtechnologie. Mit über 25 Jahren Erfahrung sind wir Ihr zuverlässiger Partner für hochwertige Kohlefaserbauteile. Unsere Expertise und unser Engagement für Qualität machen uns zur ersten Wahl in der Branche.
Optische Lackierungen

Optische Lackierungen

Wenn es um optische Lackierarbeiten geht, können wir Ihnen in allen Bereichen das richtige Verfahren anbieten. Dabei greifen wir zum Einen auf unsere moderne Technik zurück, sind aber auch darauf eingerichtet, bei Ihnen direkt vor Ort die anstehenden Arbeiten durchzuführen. Wir geben Ihrem Werkstück die richtige Farbe: - hochglanz - glänzend - seidenglänzend - matt - Struktur-Lackierungen - Effekt-Lackierungen Unser Haupttätigkeitsfeld ist dabei die Nasslackierung. Sollte es jedoch notwendig sein, bieten wir Ihnen durch unsere Schwesterfirmen aus der Burkhartsmaier Unternehmensgruppe gerne auch die Pulverbeschichtung, Siebdruck und Tampondruck an. Dies geschieht ohne Zeitverlust und Transportkosten. Werkstoffe: In unseren Anlagen und mit unseren unterschiedlichen Verfahren können wir Kleinteile und Großteile bis zu einer Abmessung von 3,50 x 3,50 x 12 Metern bearbeiten. Wir lackieren: - Stahl - Eisen - Glas - Holz - Kunststoff - Edelmetall - verzinkte Teile Arbeitsbeispiel: MDF-Platten lackieren Hier sehen Sie, wie auch Ihre Räume noch schöner werden können. Die montierten MDF-Platten wurden in unserem Betrieb vor der Endmontage bearbeitet und dann sauber lackiert. Den vorgegebenen Farbton haben wir mit einer Testlackierung abgestimmt, um dann in der Spritzkabine das exakte Finish vorzunehmen. Die einzelnen Platten wurden sehr sorgfältig verpackt und dann direkt vor Ort angeliefert. Hauptansicht der lackierten MDF-Platten Detail-Ansicht des lackierten Küchenbereiches
Plasma-Nitrocarburieren

Plasma-Nitrocarburieren

Das Plasmanitrocarburieren ist ein thermochemisches Verfahren, bei dem Stickstoff und Kohlenstoff in die Oberfläche eines Werkstücks eingebracht werden. Es erzeugt eine harte, verschleißfeste Schicht, die sowohl die Härte als auch die Korrosionsbeständigkeit des Materials verbessert. Durch die Plasmaunterstützung wird eine gleichmäßige und kontrollierbare Schichtdicke erreicht.
part. UV-Lackierung

part. UV-Lackierung

Glanzlack ist nach wie vor ein Hingucker, aber es gibt auch zahlreiche andere Möglichkeiten partiell etwas hervorzuheben: Mattlack Strukturlack Glitterlack Nachleuchtfarben Neonfarben Metallic-Farben Iriodin Effekte Rubbelfarbe Silber oder Gold Streichholz Reibeflächenfarbe Duftfarben in unzähligen Düften uvm. Mit der richtigen Idee kommt Ihr Druckprodukt vollstens zur Geltung. Übrigens muss man nicht immer nur vorgedruckte Schrift, Flächen oder Logos hervorheben, wunderbare Effekte erzielt man auch durch Strukturen, Linien oder der einfachen Wirkung von Matt zu Glanz. Gerne stehen wir Ihnen hierbei beratend zur Seite und stellen Ihnen unsere Musterblätter zur Verfügung! Technische Hinweise zur Anwendung finden Sie in unserem Download-Bereich.
Schweißen

Schweißen

Schweißverfahren WIG / MIG / MAG. Wir sind seit über 70 Jahren ein namhafter Zulieferer für die Fördertechnik (1948 gegründet). Hier fertigen über 60 Mitarbeiter bei Bedarf am gleichen Tag Ihre Komponenten für Förderanlagen/Laser-und Plasmazuschnitte sowie Kantteile und Schweisskonstruktionen.
Wassergekühlte Blasfolienanlage

Wassergekühlte Blasfolienanlage

Die wassergekühlte Blasfolienanlage von KUHNE Group ist eine hochmoderne Lösung für die Herstellung von Folien mit außergewöhnlicher Qualität. Diese Anlage nutzt fortschrittliche Kühltechnologien, um die Effizienz und Präzision der Folienproduktion zu maximieren. Mit ihrer Fähigkeit, gleichmäßige und hochwertige Folien zu produzieren, ist sie ideal für Anwendungen in der Verpackungsindustrie, wo Konsistenz und Qualität entscheidend sind. Die wassergekühlte Technologie sorgt für eine gleichmäßige Abkühlung der Folien, was zu einer verbesserten Materialeigenschaft und einer höheren Produktionsgeschwindigkeit führt. Darüber hinaus bietet die wassergekühlte Blasfolienanlage eine benutzerfreundliche Bedienoberfläche, die eine einfache Steuerung und Überwachung des Produktionsprozesses ermöglicht. Die Anlage ist so konzipiert, dass sie den Energieverbrauch minimiert und gleichzeitig die Produktionskapazität maximiert. Dies macht sie zu einer kosteneffizienten Lösung für Unternehmen, die ihre Produktionsprozesse optimieren möchten. Mit der Unterstützung von KUHNE Group erhalten Kunden nicht nur eine erstklassige Maschine, sondern auch umfassendes Know-how und technischen Support, um die besten Ergebnisse zu erzielen.
Plasmanitrieren

Plasmanitrieren

DIE BEVORZUGTE METHODE BEI GLEIT- UND WÄLZPAARUNGEN WIE KOLBEN ODER GETRIEBEKOMPONENTEN. Schon 1930 wurden erste Versuche unternommen, mit einer starken Glimmentladung im Stickstoffvakuum Stahlteile zu nitrieren. Dabei werden ionisierte Gase auf die zu härtenden Werkstücke „aufgeschossen“. So funktioniert das Verfahren auch heute noch. Aber erst die Mikroprozessortechnik erlaubt die exakte Steuerung des Nitrierens im „vierten Aggregatzustand“, d.h. im Plasma. Das Plasmanitrieren ermöglicht den Aufbau spezieller Schichten mit hoher Reproduzierbarkeit bei verkürzten Prozesszeiten. Bevorzugte Anwendung findet das Verfahren bei Gleit- und Wälzpaarungen wie Kolben und Getriebekomponenten sowie bei Teilen, von denen besondere Verschleißfestigkeit verlangt wird. Die HÄRTEREI REESE verfügt über Anlagen, die das Plasmanitrieren von extrem großen Werkstücken im verzugsarmen Puls-Plasma-Verfahren ermöglichen.
Plasmanitrieren

Plasmanitrieren

Unter „Plasmanitrieren“ versteht man das Anreichern des Randbereichs eines Werkstücks mit Stickstoff in speziellen Plasmanitrieranlagen. Der Stickstoff bildet mit den Legierungsbestandteilen des Werkstücks Nitride (z.B. Fe-Nitride, Cr-Nitride, …). Dies führt zu einer harten und verschleißfesten Oberfläche. Das Nitrieren im Plasma findet, im Vergleich zu anderen Nitrierverfahren, bei niedrigen Temperaturen von zum Teil kleiner 450°C statt. Dies wirkt sich positiv auf thermisch bedingte Bauteilverzüge aus. Plasmanitrieren spielt seine Vorteile insbesondere aus bei: Nichtrostenden Stählen (VA-Stählen), da diese im Gas auf Grund ihrer Passivschicht sonst nicht nitriert werden können. Werkstücken, die partiell nitriert werden müssen, da ein mechanisches Abdecken der nicht zu nitrierenden Bereiche möglich ist. Das Plasmanitrieren findet bei H+W in Plasmanitrieranlagen statt. Gängige Werkstoffe: Nahezu alle Stähle Nahezu alle Gusseisenwerkstoffe
Laserauftragschweißen

Laserauftragschweißen

Durch das Laserbeschichten erzeugen wir Verschleiß und Korrosionsschutzschichten aus z.B. allen gängigen Stelliten, Inconel Legierungen, WC Schichten ect.
Pulverbeschichtung Metallteile

Pulverbeschichtung Metallteile

Ein junges Unternehmen mit viel Erfahrung und Tradition – für uns kein Widerspruch, sondern Realität! Der Grundstein für die ALPHA Oberflächentechnik GmbH wurde nicht erst mit der erfolgreichen Inbetriebnahme der neuen Vorbehandlungs- und Pulverbeschichtungsanlage Anfang 2017 gelegt, sondern bereits Anfang der 70er Jahre. 1972 wurde der Maschinenpark der Heinzig Metalltechnik GmbH um eine Pulverbeschichtungsanlage erweitert – die zu der Zeit einzige ihrer Art in ganz Ostwestfalen. Der Ausbau der Anlage Ende der 90er Jahre ging einher mit dem Umzug in eine neue Werkshalle, der heutige Firmenstandort. Mit der Investition in eine komplett neue Vorbehandlungs- und Pulverbeschichtungsanlage wurde Anfang 2017 die ALPHA Oberflächentechnik GmbH gegründet. Bei der Planung der Anlage wurde großen Wert auf den Umweltaspekt gelegt. So geben die Bauteile nach dem Einbrennprozess im Kammerofen ihre Wärme wieder an den Haftwassertrockner ab. Zudem wird das Pulver umweltfreundlich recycelt und die gesamte Anlage mit Solarstrom betrieben. Neben modernster Technik sind es unsere Mitarbeiter, die uns mit ihrem Wissen und Engagement weiterbringen und uns ausmachen. Wir sind stolz mit einem jungen Team schon so viel erreicht haben zu haben. Erfahrung. Tradition. Modernste Technik. Wir sind ALPHA!
Laserschweißen von Kupfer

Laserschweißen von Kupfer

TECHNOLOGIEBRERATUNG Profitieren Sie von unserem Know How Die Vorteile Reduzierung von Poren Vermeidung von Heiß- und Härterissen Höhere Einschweißtiefe bei gleicher Leistung Geringerer Energieeintrag bei gleicher Einschweißtiefe Weniger Verzug Parallele Nahtflanken Keine Bedampfung und Verschmutzung Bessere Korrosionsbeständigkeit Das Ziel der Technolgieberatung ist es, diese Vorteile immer an Ihren Produkten zu demonstrieren! Eine neue Technologie wird nur dann in Erwägung gezogen, wenn sie technologische oder ökonomische Vorteile bietet. Im besten Fall jedoch beides! Im Rahmen der Technologieberatung informieren wir Sie über die Möglichkeiten unserer Technologie und welcher Nutzen genau für Ihre Produkte dabei entsteht. Den Kundenwunsch stets im Fokus Ihre individuellen Anforderungen stehen bei LaVa-X immer im Vordergrund. Dabei begleiten wir Sie und Ihre Produkte in jedem Produktlebenszyklus: Sei es ab der ersten Skizze, einer bestehenden Fertigungszeichnung, die für das Laserstrahlschweißen optimiert werden soll oder einem existierenden Produkt. Entwicklungspartner von Beginn an Unsere Konstrukteure, Schweißfachingenieure und Automatisierungstechniker freuen sich darauf, Ihnen die Möglichkeiten des Verfahrens und unser Konzept des modularen Maschinenbaus für das Laserstrahlschweißen im Vakuum vorstellen zu können. In einem ersten Schritt analysieren wir gemeinsam mit Ihnen die Anforderungen an den Fügeprozess, die sich aus Ihren Produkten ergeben. Dabei unterstützen wir Sie auch bei der laserstrahlgerechten Konstruktion Ihrer Bauteile. Prozessentwicklung auf Universitätsniveau Bei der Prozessentwicklung werden die richtigen Schweißparameter für die optimale Nahtgeometrie ermittelt. Im Anschluss erfolgt die Qualifizierung der Schweißnaht nach metallografischen und mechanisch-technologischen Kennwerten.
Laserbohren

Laserbohren

Laserfeinbohren unterschiedlichster Materialien bis zu 3µm Durchmesser. Weitere Informationen unter https://lasermikrobearbeitung.de/ Die Vorteile des Laserbohrens: • Lochdurchmesser ab 3 µm • Hohe Präzision • Keine Mikrorisse • Sehr geringer Wärmeeintrag in das umliegende Material • Scharfkantiger Bohrungsrand ohne Aufwürfe und Grat • Außerordentliche Gestaltungsfreiheit in der Lochgeometrie • Berührungsloses Verfahren • Kein Werkzeugverschleiß Bearbeitbare Materialien : o Metalle o Keramiken o Glas o Polymere o Halbleiter o Faserverbundstoffe o Dünnschichtsysteme Das Bohren von Mikrolöchern, auch Mikro-Vias genannt, mit wohldefinierter Geometrie gewinnt in verschiedensten Bereichen der Industrie zunehmend an Bedeutung. Die Anwendungen sind dabei äußerst vielfältig. Das Laserbohren mit unterschiedlichsten Bohrstrategien hat sich dabei in verschiedenen Bereichen gegenüber konventionellen Herstellungsverfahren durchgesetzt. Die Einsatzgebiete reichen dabei von der Herstellung von Mikrobohrungen in Durchflussfiltern, Mikrosieben und Inhalatoren über Bohrungen in Hochleistungssolarzellen bis hin zu Einspritzdüsen in der Automobilindustrie oder Herstellung von Inkjet-Druckdüsen. Die Vorteile des Laserbohrens: Das Laserbohren ist eine Kraft- und kontaktfreie Bearbeitung. Eine Verformung des Materials durch Werkzeuge findet somit nicht statt. Es entstehen zudem keine zusätzlichen Werkzeugkosten durch Verschleiß. Die Lasertechnik punktet zudem mit einem genau dosierbaren Energieeintrag, der geringen Wärmezufuhr ins Material sowie der außerordentlich hohen Präzision und Reproduzierbarkeit. Eine Nachbearbeitung der Bohrung ist deshalb nicht notwendig. Zusätzliche Vorteile entstehen durch die Flexibilität in der Bohrungsgeometrie. So können beispielsweise durch Variationen in der Bearbeitungsstrategie Mikrobohrungen mit einem großen Aspektverhältnis (dem Verhältnis von Bohrtiefe zu Bohrungsdurchmesser) oder auch Löcher mit definierten Wandwinkeln hergestellt werden. Laserquellen Je nach Anwendung und Aufgabe kommen bei der Herstellung dieser Mikrobohrungen unterschiedliche Laser zum Einsatz. Während für Kunststoffe oft Excimer-Laser oder Festkörperlaser im UV-Bereich verwendet werden, sind es in der Metallbearbeitung meistens Festkörperlaser im sichtbaren oder Infraroten Spektralbereich. Die Größe der dabei erzielten Bohrungen ist unter anderem abhängig von Material, Strahlquelle, Pulsdauer und Energiedichte und kann dadurch von wenigen Mikrometern bis zu einigen Millimetern variieren. Ein weiterer entscheidender Faktor ist die Wahl der Bohrtechnik. Bohrverfahren Perkussionsbohren: Doch die Wahl des richtigen Lasers allein ist für den Erfolg nicht ausreichend. Auch das entsprechende Bohrverfahren spielt eine entscheidende Rolle. Bekannte Bohrtechniken sind das Perkussionsbohren und das Trepanieren. Beim Perkussionsbohren werden mehrere Laserpulse auf die Oberfläche des Materials geführt bis das Loch erzeugt oder die gewünschte Bohrtiefe des Sacklochs erreicht ist. Dieses Verfahren ist sehr schnell, es können mehrere hundert- oder tausend Bohrungen pro Sekunde erzeugt werden. Je nach Strahlführung lassen Bohrungen mit festem Durchmesser oder variabler Bohrungsgeometrie (Konizität) realisieren. Trepanierbohren: Beim Trepanieren werden die Löcher ausgeschnitten. Die Vorteile des Trepanierens liegen zum einen in der Herstellung von Löchern mit großem Bohrungsdurchmesser und großer Reproduzierbarkeit, sowie der Möglichkeit der Herstellung von nicht kreisrunden Bohrungen. Zugleich wird beim Trepanieren die Konizität der Bohrung verringert. FSLA™ für transparente Materialien: Die patentierte FSLA™-Technologie (Flow Supported Laser Ablation) ermöglicht das Bohren von Mikrolöchern mit präziser Geometrie (gerade, zylindrisch) in transparenten Materialien wie zum Beispiel Glas oder Saphir. Zudem ist diese Bohrverfahren perfekt für die Herstellung komplexer Freiform- und Hinterschnittgeometrien geeignet. Weitere Informationen: https://3d-micromac.de/laser-mikrobearbeitung/applikationen/fsla/
Keramikstrahlen

Keramikstrahlen

Nichtrostende Stähle Keramikstrahlen Nichtrostende Stähle
LOHNFERTIGUNG Schweißen

LOHNFERTIGUNG Schweißen

Schweißen Schweißen in WIG, MIG, MAG Anbringung von Schweiß-Gewindebolzen oder Einpressmuttern
Laserauftragschweißen

Laserauftragschweißen

Laserauftragschweißen im Prozess Beim Laserauftragschweißen wird zum Zwecke der Reparatur oder des Verschleißschutzes Material aufgetragen. Das aufgeschweißte Material kann dabei in Bezug auf Härte und mechanische Eigenschaften genau auf den Lastfall abgestimmt werden. Konventionell werden Aufschweißungen mit autogenen oder elektrischen Verfahren aufgebracht, was zu einer sehr hohen Wärmebelastung führt und nicht verzugsfrei ist. Beim Laserauftragschweißen bzw. Laserbeschichten wird dagegen mit einem präzisen Laser gearbeitet, sodass Schweißraupen mit Breiten zwischen 0 und 4mm aufgeschweißt werden können. Das erlaubt ein sehr präzises Auftragschweißen und die geringe, aber konzentrierte Wärmeeinbringung garantiert größtmögliche Verzugsfreiheit. Damit eignet sich das Laserauftragschweißen hervorragend für die Reparatur von Werkzeugen und Maschinenkomponenten und für den Verschleißschutz. Beim Verschleißschutz von sehr harten Teilen wird übrigens oft auch der Begriff Aufpanzern verwendet. Ein anderes Wort für Laserauftragschweißen ist außerdem Auflasern. Es wird gern für das Laserbeschichten von Teilen verwendet, die früher zur Reparatur verchromt wurden. Die Umstellung vom Verchromen oder Hartverchromen auf Auflasern ist ein wichtiger Beitrag zum Umweltschutz, denn es entstehen bei der Laseroberflächenbehandlung keine giftigen Abfälle, die kostenintensiv entsorgt werden müssen. Vorteile Der wichtigste Vorteil des Laserauftragschweißens bzw. Laserbeschichtens liegt darin, dass aufgrund des präzisen Lasers sehr fein gearbeitet werden kann. Dabei werden die Spuren CNC-gesteuert aufgeschweißt, sodass die Reproduzierbarkeit sehr hoch ist und auch größere Volumina schnell aufgeschweißt werden können. Der Schweißprozess sorgt für eine dauerhafte Verbindung von Grund- und Zusatzmaterial. Gleichzeitig ist die Wärmeeinbringung so gering, dass weitgehende Verzugsfreiheit gegeben ist. Durch Laserauftragschweißen lassen sich alle Arten von Metallen bearbeiten. Dabei steht ein breites Spektrum an verwendbaren Zusatzmaterialien zur Verfügung. Die aufgeschweißte Schicht kann so an die spezifische Verschleißbelastung optimal angepasst werden. So ist bei den meisten Materialvarianten beim Laserauftragschweißen die Härte zwischen 20..65 HRC einstellbar. Das Laserauftragschweißen ist darüber hinaus optimal für das Einschmelzen von Hartstoffen (bis 2000 HV, Verschleißschutz). Durch diese Optimierung des Materials kann auch bei der Reparatur verschlissener Teile durch Laserauftragschweißen oft ein Ergebnis erzielt werden, das weitaus bessere Eigenschaften als das Original hat. Besonders attraktive Vorteile der Laseroberflächenbehandlung finden sich im Bereich der Reparatur, denn: Das Umstellen vom Verchromen auf Auflasern ist ein Gewinn für unsere Umwelt und kostengünstiger. - sehr präzise - verzugsarm bis verzugsfrei - kaum Poren oder Lunker - für die meisten Materialien verwendbar - Härten 20..65 HRC - auch für Aluminium - für Reparatur und Verschleißschutz - schnell und reproduzierbar
Lackierplatten für die Druckmaschinen

Lackierplatten für die Druckmaschinen

Folacoat Plus, Folacoat Extreme, Folacoat Ultra T, Folacoat Diamond, Folacoat Pearl, Folacoat Basic, Folacoat Advance, Folacoat Flex Die Produkte der ECO-Line zeichnen sich durch gute Performance und Wiederverwendbarkeit aus. Ein geändertes Anforderungsprofil für Lackplatten (z.B. einmalige Nutzung, kleinere Auflagen) wird mit Produkten der ECO-Line bestens erfüllt. Dem Wunsch nach unmittelbarer Kosteneinsparung beim Lackplattenbezug wird hier eine besondere Bedeutung beigemessen. Die Verbesserung der Produktivität und Effizienzsteigerung in den Druckprozessen wird hierbei auf besondere Weise erreicht. Die Eigenschaften der ausgewählten Transferpolymere sind auf diese Anforderungen abgestimmt und gewährleisten ein gutes Lackierergebnis. Die Produkte der Premium-Line zeichnen sich durch höchste Performance und beste Wiederverwendbarkeit aus. Im Fokus steht hierbei die Verbesserung der Produktivität und Effizienzsteigerung in den Druckbetrieben. Die verwendeten universellen Transferpolymere bieten die perfekte Oberfläche für einen problemlosen Lacktransfer. Auch bei der Verwendung von LED-UV und H-UV Anwendungen werden beste Ergebnisse erzielt. Der Effekt der Farbrückspaltung beim Druck wird weitestgehend reduziert. Der Produktionsausfall bedingt durch Waschintervalle der Lackierform, wird signifikant reduziert. Die Select-Line ist ausschließlich unseren Preferred-Händlern vorbehalten. Die Produkte dieser Linie zeichnen sich durch ein ausgezeichnete Leistungsprofil aus. Neben hervorragenden Lackiereigenschaften steht bei diesen Produkten die Produktivität und Qualität des Lacktransfers im Focus.
Laserauftragschweißen

Laserauftragschweißen

Schnelles und kostengünstiges Korrigieren oder Modifizieren Ihres Werkzeugs. Das Laserauftragschweißen ist eine kostengünstige Alternative zu kosten- und zeitintensiven Neuanschaffung eines Werkzeuges. Durch das geringe, aber konzentrierte Erhitzen des Schweißzusatzwerkstoffes (Metallpulver) durch den Hochleistungs-Diodenlaser, lassen sich Reparaturen und Modifikationen am Bauteil schnell durchführen. Qualitativ hochwertige lunker- und rissfreie Schweißschichten und zudem auch sehr geringe Schweißnahthöhen, gepaart mit einer schnellen Bearbeitungszeit, machen das Laserauftragschweißen in der heutigen Zeit sehr attraktiv. Einsatzbereiche für das Laserauftragschweißen: Werkzeuge für die Massiv- und Blechumformung, zum Beispiel: Verschleiß, Ausbruch oder Geometrieänderungen bei Press- und Ziehwerkzeugen Das Umformen, zum Beispiel: Verschleiß / Einarbeitungen bei Blasformen, Spritzgiesswerkzeugen, Druckguss- und Kokillenwerkzeugen Einzelteilgeschäft, zum Beispiel: Reparatur von sonst sehr umständlich zu ersetzenden Bauteilen wie Schneckenförderungselemente im Tiefbau Welchen Nutzen haben Sie durch das Laserauftragschweißen? marginaler Verzug durch die geringe Wärmeeinbringung hohe Korrosions- und Verschleißeigenschaften keine bläulichen Verfärbungen an der geschweißten Zone hohe Materialmischung (Bindung mit dem Grundmetall) und äußerst geringe bis gar keine Porosität (Abhängig vom Grundwerkstoff und der gewünschten Pulvergüte) mehrere Pulvergüten mit unterschiedlichen Qualitäten, für die verschiedenen Anforderungen am Produkt, vorhanden wenig Nacharbeit durch geringe Schweißnahthöhen viele Schweißnahtlagen auch übereinandergelegt (Meander-Verfahren) möglich Auf Wunsch können wir die aufgebrachten Lagen und somit die Bauteiländerung, 3D-laserscannen und Ihnen den Datensatz zur Verfügung stellen. Sprechen Sie uns an - wir freuen uns auf Sie!
Unterpulver-Schweißen

Unterpulver-Schweißen

Das Baueinheitenkonzept der KA-Schweißautomaten-Reihe bildet die Grundlage für unterschiedliche technologische Systemlösungen. Zusammen mit den Kjellberg Schweißstromquellen ergeben sich aus einer Vielzahl von Möglichkeiten maßgeschneiderte Lösungen. Produkt Manuelle UP-Technik Pulverausrüstung Schweißautomaten Stromquellen Filtern Es konnten leider keine passenden Produkte gefunden werden. Ansprechpartner Unterpulver-Schweißen Sascha Rudnik
Protective Coating von Graphitelektroden

Protective Coating von Graphitelektroden

Reducing the specific graphite consumption is one major issue for electric steel plants and can be achieved in several ways, particularly by protecting the electrode surface from oxidation or at least delaying the start of the oxidation process. For more than 40 years, the most efficient technique applied in electric steel production is the special Graphite Cova protective coating for graphite electrodes. All over the world, Graphite Cova is the only producer of this type of coating which is used in metallurgy (electric steel production) as well as in the production of non-metal and mineral products by electric arc treatment (mineral wool, corund, silicium, etc.). The production of protective coating is a high-tech process made on machines designed especially for this purpose. On EAFs, where water spray cooling is applied for reducing the specific graphite consumption, a further reduction of 10 to 15% can be achieved by using coated electrodes. On LFs, however, the specific graphite consumption can be reduced by up to 30% by using coated electrodes (depending on the operation conditions of the furnace). The Graphite Cova coating process has been improved continuously during the last 20 years and is available today in two main types: “white coating” and “black coating”. The latest patent for the technological development of coating dates from the year 2000. CONTACT: Mr. Riju Chatterjee e-mail: chatterjee@graphitecova.com Phone: +49 911 5708305 Mobile: : +49 176 1 5708 202 / +49 155 1 0556 253 E-Mail: chatterjee@graphitecova.com
Transparenter Korrosionsschutz

Transparenter Korrosionsschutz

In extrem aggressiven chemischen Umgebungen werden selbst verschiedene Gläser angegriffen. Dies betrifft auch insbesondere optische Komponenten. Durch Aufbringen einer hinreichend dünnen Siliziumkarbid Schicht wird die optische Transmission nur geringfügig reduziert, die chemische Beständigkeit aber um ein Vielfaches gesteigert.
Oberflächenveredelung: Galvanik, Lackierung und Pulverbeschichtung

Oberflächenveredelung: Galvanik, Lackierung und Pulverbeschichtung

In der Lohnfertigung, insbesondere bei der Bearbeitung von Metallteilen, spielt die Oberflächenveredelung eine entscheidende Rolle. Ihr Zweck besteht darin, sicherzustellen, dass die hergestellten oder bearbeiteten Werkstücke – sei es aus Metall, Kunststoff oder anderen Materialien – nicht nur ein ansprechendes Erscheinungsbild aufweisen, sondern auch mit zusätzlichen Funktionen wie Korrosionsschutz, erhöhter Härte oder verbesserten elektrischen Eigenschaften ausgestattet sind. Wir kümmern uns um: - Galvanische Verfahren wie Verchromen oder Vernickeln bieten einen hervorragenden Schutz gegen Korrosion und Verschleiß. - Lackierungen hingegen ermöglichen eine breite Farbpalette und können spezielle Eigenschaften wie UV-Beständigkeit aufweisen. - Pulverbeschichtungen sind besonders robust und langlebig, und sie eignen sich gut für Metallteile, die einer starken Beanspruchung ausgesetzt sind.
Oberflächentechnik

Oberflächentechnik

Für Ihren individuellen Einsatz bieten wir Ihnen eine Reihe hochverschleißfester Beschichtungsverfahren, mit ebenfalls hohen Korrosionsbeständigkeiten an. Nutzen Sie unser Wissen zu einer Vielzahl von Techniken und Verfahren, welche die Lebensdauer sowie die Leistung Ihrer Bauteile unter extremen Bedingungen signifikant verbessern. Steigern Sie nicht nur die Performance und Langlebigkeit Ihrer Anlage, sondern tragen Sie auch aktiv zur Schonung wichtiger Ressourcen bei. Unsere Oberflächentechnikdienstleistungen sind darauf ausgelegt, die Leistung und Effizienz Ihrer Maschinen zu maximieren. Wir bieten eine Vielzahl von Materialien und Designs, die speziell auf Ihre Bedürfnisse zugeschnitten sind, und arbeiten eng mit Ihnen zusammen, um sicherzustellen, dass Sie die bestmögliche Lösung für Ihre spezifischen Anforderungen erhalten.
Blechbearbeitung und Schweißen

Blechbearbeitung und Schweißen

Mehrfachkantung Unsere Blechbearbeitungsmöglichkeiten: Laserschneiden Baustahl 0,5 bis 12 mm, Edelstahl 0,5 bis 6 mm, Plattengröße 3 x 1,5 m CNC-Feinstrahl-Plasmaschneiden Baustahl bis 50 mm und Edelstahl bis 35 mm, Plattengröße 4,5 x 2 m CNC-Autogen Brennschneiden bis 100 mm Baustahl Plattengröße 4,5 x 2 m max. 2t Schweißen Baustahl und Edelstahl mit WIG, MAG-Impuls Plasmaschneidanlage Schweißen Aluminium mit WIG–Wechselstrom MIG-löten und Hartlöten Bolzenschweißen bis M8x40 mm Widerstands-Punktschweißen Glasperlenstrahlen im Strahlhaus ca. 8 x 5 m Grundfläche elektrolytisches entfernen der Anlauffarben von Edelstahlschweißnähten Werkzeuge für Abkantpresse Blech zuschneiden mit NC-Schlagschere 3 m Schnittlänge bis 5 mm, mit NC-Anschlag und Hochhaltevorrichtung für Dünnbleche Rohr, Winkel und Flachstahl biegen mit Ringbiegemaschine walzen mit Dreiwalzenbiegemaschine mit Konuseinrichtung 1270 mm Breite bis 2,5 mm Blech und Durchmesser 100 mm Kantungen mit hydraulischer CNC-Abkantpresse 220t und 8-Achsen (geteilte Werkzeuge; 3,1 m Länge, 2,6 m zwischen den Ständern) Beschichtung durch Spritzlackieren in eigener Lackierkabin
Chemikalienschutz-Beschichtung (sprüh-/pinselbar): MetaLine 100 XTM

Chemikalienschutz-Beschichtung (sprüh-/pinselbar): MetaLine 100 XTM

MetaLine 100 XTM ist eine rest-elastische Novolac-Beschichtung, die für die kundenseitige Selbstverarbeitung durch pinseln, walzen oder airless-sprühen entwickelt wurde. Alternativ kann die Auftragung auch mit unserem MetaLine Kartuschen-Sprüh-System APPLICATOR XTM erfolgen. Haupteinsatzgebiet ist der dauerhafte Schutz metallischer oder zementgebundener Oberflächen gegen aggressivste chemische Flüssigsubstanzen wie Säuren, Laugen oder Lösungsmittel – auch unter erhöhten Temperaturen. Das ungiftige Material wird bei Raumtemperatur mehrschichtig aufgebracht und bindet sich dauerhaft und völlig korrosionsbeständig an nahezu alle harten Oberflächen. Nach der Verfestigung entsteht ein undurchlässiger Glassflake-Verbundwerkstoff mit einer außergewöhnlichen chemischen Beständigkeit. Die Schutzfunktion umfasst ein sehr großes Spektrum an organischen und anorganischen Reinstchemikalien, Mischprodukten, Produktionsabfällen, sowohl auf wässriger als auch teilweise auf lösemittelhaltiger Basis. Die Temperaturbeständigkeit beträgt unter getauchten Bedingungen ca. 130 °C. Die Beschichtung kann mit Drücken bis zu 100 bar beaufschlagt werden. Es bestehen gute thermische und elektrische Isolationseigenschaften. MetaLine 100 XTM in einer Schichtdicke von 1,5 mm erfüllt die Korrosionsschutz-Anforderungen eines 10.000 Std. Salznebel-Sprühtests! Anwendungsbereiche: – Chemikalien-Schutzbeschichtungen – Betonabdichtungsmaßnahmen – Behälterauskleidungen – Elektrische & thermische Isolierung – Korrosionsschutzanwendungen