Finden Sie schnell modelierung für Ihr Unternehmen: 2043 Ergebnisse

3-D Scan-Service & 3-D Druck Modelle

3-D Scan-Service & 3-D Druck Modelle

3-D Modelle für den 3-D Druck, 3-D Visualisierung, 3-D Flächenrückführung, Online Shop 3-D Scan-Service, 3-D Druck Modelle, 3-D Visualisierung
Funktionsmodelle

Funktionsmodelle

m Zusammenspiel von AV-Medien, Licht, Mechanik und Bewegung werden komplexe technische Zusammenhänge leicht verständlich erklärt und erlebbar gemacht. Wir entwickeln 3D-Objekte nach Ihren Vorstellungen und fertigen designorientierte Exponate für Museen und Ausstellungen. Selbstverständlich mit hoher Funktionalität und in bewährter axis-Qualität.
3D-Modell-Druck

3D-Modell-Druck

Wir drucken Ihr gewünschtes Modell aus einem Werkstoff Ihrer Wahl! Die additive Fertigung (auch als 3D-Druck bekannt), erlaubt eine schnelle, kostengünstige und formfreie Herstellung von Bauteilen. Dabei spielen Größe, Farbe und Form nur eine untergeordnete Rolle. 3D-gedruckte Objekte finden Anwendung im Haushalt, Werkzeugbau und Industrie. Egal, ob Funktions- oder Dekorationsteil - mit dem passenden 3D-Druckverfahren halten Sie Ihre Idee schon bald in den Händen! Bei dem "Fused Deposition Modeling" (kurz: "FDM") wird das 3D-Modell schichtweise auf dem Heizbett aufgebaut. Hierbei wird das Material (Filament) durch einen Extruder in das sogenannte "Hotend" gedrückt, in dem es auf die jeweilige Schmelztemperatur erhitzt und anschließend durch die Druckdrüse extrudiert wird. Für verschiedene Anwendungsfälle besitzen wir mehrere industrielle 3D-Drucker und 3D-Druck-Verfahren im Portfolio, um jeden Ihrer Wünsche zu erfüllen. Für besonders hochauflösende Modelle verwenden wir das Stereolithographie-Verfahren (kurz: "SLA"), bei dem ein flüssiges Harz durch eine UV-Quelle ausgehärtet wird. An den belichteten Stellen verfestigt sich das fotoempfindliche Harz und entwickelt damit das Einzelteil. Mit diesem Verfahren realisieren wir Schichthöhen von bis zu 0,01mm und eine Präzision von bis zu 47 Mikrometern. Nach dem Druckvorgang wird das Modell von den benötigten Stützstrukturen bereinigt, in einer speziellen Maschine mit Isopropanol gewaschen und letztlich erneut ausgehärtet. Die entstehenden Modelle weisen eine sehr glatte Oberfläche bei gleichzeitig hoher Detailauflösung auf. Das additive Herstellungsverfahren des Selektiven Laser Sinterns (kurz: SLS) gehört zu den fortgeschrittenen industriellen 3D-Druck-Verfahren. Hierbei werden keine Filamente oder Harze, sondern Kunststoff- oder sogar Metallpulver verarbeitet. Auch bei diesem Verfahren wird das Modell schichtweise von unten nach oben aufgebaut. Das Druckbett wird dabei für jede Schicht mit Pulver "benetzt", von der anschließend ein Laser die entsprechenden Stellen bis kurz vor den Schmelzpunkt erhitzt und damit die gewünschten Bereiche des 3D-Modells ausbildet. Nach jeder Schicht fährt das Druckbett dann eine bestimmte Distanz (i.d.R. zwischen 0,05mm bis 0,3mm) nach unten und die nächsten Bereiche werden selektiv durch den Laser gebunden. Nach dem Laserprozess muss der sogenannte "Pulverkuchen" zunächst abkühlen, bevor das 3D-gedruckte Modell vom restlichen Pulver getrennt und gesäubert werden kann. Anschließend kommt das Teil in einen Sinterofen, bei dem die gebundenen Moleküle letztendlich miteinander verschmelzen und das Modell damit nahezu Materialeigenschaften wie beim Spritzguss aufzeigt. Durch die feine Pulverstruktur und die Genauigkeit des Lasers können bei diesem 3D-Druck-Verfahren extrem genaue und detaillierte Modelle erzeugt werden. Doch der wahrscheinlich größte Vorteil ist ein Anderer: Da das schichtweise aufgebaute Modell im gesamten 3D-Druck-Prozess von dem Kunststoff-Pulver umgeben ist, werden keine Unterstützungsstrukturen wie beim FDM- oder SLA-Verfahren benötigt. Das erlaubt alle denkbaren Geometrien auch bei filigranen Bauteilen. Zudem können dadurch die Bauteile im verfügbaren Bauraum auch übereinander positioniert werden, sodass die zu druckende Stückzahl pro 3D-Druck-Durchgang erheblich gesteigert werden kann. So ist das SLS-Verfahren eine attraktive Möglichkeit für höhere Stückzahlen bei detaillierten und komplexen Kunststoffbauteilen.
SolidSteel parametric - 3D CAD Stahlbau für PTC Creo Elements/Direct Modeling

SolidSteel parametric - 3D CAD Stahlbau für PTC Creo Elements/Direct Modeling

SolidSteel parametric ist eine parametrische 3D CAD Stahlbaulösung für PTC Creo Elements/Direct Modeling. Erstellen Sie Profile, Anschlüsse und erzeugen Sie NC Daten von Ihrer Konstruktion. Über Solid Steel parametric Seit vielen Jahren gibt es viele verschiedene CAD Stahlbaulösungen. Manche sind als unabhängige Lösungen konzipiert, andere als Zusatzmodule für Standard CAD Systeme. SolidSteel parametric ist ebenfalls ein Zusatzmodul, bzw. eine App für Standard CAD Systeme, welches allerdings im Gegensatz zu vielen anderen Lösungen für verschiedene CAD Systeme zur Verfügung steht. Als besonderes Highlight bietet SolidSteel für den Datenaustausch ein intelligentes und eigenes Datenformat. Mit diesem Datenformat kann eine Stahlkonstruktion problemlos von einem System zu einem anderen exportiert werden und dort nahtlos weiterbearbeitet werden. Wichtig dabei ist, dass wirklich alle Stahlbauinformation erhalten bleiben. Mit SolidSteel parametric wird der Stahlbaudatenaustausch so einfach wie die Weitergabe eines PDF-Dokuments. Konstruktion mit Solid Steel parametric Wie der Name schon sagt, handelt es sich um ein parametrisches Stahlbausystem. Das bedeutet, dass bei nachträglichen Änderungen die gesamte Konstruktion automatisch an die geänderte Situation angepasst wird. Wenn z.B. eine Stütze an eine neue Position geschoben wird, dann werden alle an dieser Stütze anschließenden Bauteile genau passend verlängert, verkürzt oder verdreht. Falls notwendig, werden sogar die Neigungswinkel der anschließenden Träger geändert. Diese automatischen Änderungen ziehen sich durch die gesamte Konstruktion inklusive der Anschlüsse durch. Selbst komplexe Anschlüsse wie Rahmenecken mit Vouten, Kopfplatten oder Rippen werden automatisch an eine geänderte Situation angepasst.
Rapid Prototyping

Rapid Prototyping

Rapid Prototyping – die schnelle und genaue Herstellung von Musterbauteilen Kürzer werdende Produktzyklen und zunehmende Qualitätsanforderungen sind Herausforderungen, die wir gerne annehmen. Ihre Lösung: Rapid Prototyping und über 40 Jahre Erfahrung der VON ALLMEN AG. Herausragende Innovationen für unsere Kunden und stetige Weiterbildungen unserer Mitarbeiter lassen uns mit Zuversicht auch neue und unbekannte Wege gehen. Wir sind überzeugt: Wir finden einen Weg für Ihre Idee! Unser Versprechen: Präzision und ein absolut zuverlässiges Timing! Wenn 3D CAD-Daten existieren, können wir innert Tagesfrist ein SLA oder SLS produzieren. Ihre Vorteile: Sie überzeugen mit zuverlässiger Qualität und vermeiden Lieferengpässe. Folge: Das Firmenimage steigt, Lagerkosten sinken. Das sind beste Voraussetzungen für einen steigenden Return of Investment (Roi). Rapid Prototyping – die schnelle und genaue Herstellung von Musterbauteilen Rapid Prototyping Technologien ermöglichen extrem kurze Lieferfristen und ausserordentliche Präzision in der Produktentwicklung. Unter Rapid Prototyping (RP) versteht man die schnelle Herstellung von Musterbauteilen, ausgehend von Konstruktionsdaten. RP-Verfahren sind Fertigungsverfahren, die vorhandene CAD-Daten möglichst ohne Umwege direkt und schnell in Formteile umsetzen. Die für diese Verfahrensgruppe relevante Datenschnittstelle ist das STL-Format. Die unter dem Begriff des Rapid Prototypings bekannt gewordenen Verfahren sind in der Regel Urformverfahren, die das Werkstück schichtweise aus formlosem oder formneutralem Material unter Nutzung physikalischer und/oder chemischer Effekte aufbauen. Stereolithographie (SLA) eignet sich für Prototypen, Praxis-Funktionsmodelle und Einbaumuster sowie Kleinstserien. Selektives Lasersintern (SLS) eignet sich für Prototypen, Praxis-Funktionsmodelle und Kleinserien.
Rapid Prototyping

Rapid Prototyping

Mit unserem hochmodernen Polyjet-3D-Drucker sowie einem leistungsstarken FDM-Drucker können wir über Nacht hochpräzise und technisch voll belastbare Bauteile fertigen. Um auf unsere Kundenbedürfnisse detailliert eingehen zu können bieten wir zwei sehr unterschiedliche Verfahren an. Beim hochmodernen Polyjet 3D-Druck wird eine flüssige Kunststoffschicht aufgedruckt und mit UV-Licht gehärtet. Dank der branchenweit besten Auflösung bietet er höchste Präzision. Aktuell können acht verschiedene Materialien mit verschiedenen Eigenschaften verarbeitet werden. Die Oberflächen kommen wahlweise matt oder glänzend aus dem Drucker und müssen nicht nachbearbeitet werden. Auf Wunsch lassen sie sich problemlos schleifen und lackieren. Die so produzierten Bauteile entsprechen den höchsten Anforderungen an Optik, Präzision und Belastbarkeit. Damit sind sie nicht nur für Prototypen geeignet, sondern eignen sich auch perfekt für komplexe Serienteile. Das zweite Verfahren ist der FDM-Druck, bei dem ein drahtförmiges Rohmaterial in einem Extruder aufgeschmolzen und damit schichtweise das Bauteil zusammengesetzt wird. Es handelt sich um das am weitesten verbreitetste Verfahren. Auflösung, Wand- und Schichtstärke sowie Genauigkeit kommen nicht an das Polyjet-Verfahren heran. Dafür gibt es eine Vielzahl unterschiedlicher Materialien wie ABS, PLA, TPE, PS, PA, PC, PETG und viele mehr. Damit lassen sich Funktionsmuster im Originalmaterial herstellen. Die bei uns im Hause mögliche Nachbearbeitung wie Schleifen, Nachfräsen, Gewindeschneiden oder Passungen reiben eröffnen dabei völlig neue Perspektiven für schnelle und günstige Funktionsmuster im Originalmaterial.
Rapid Prototyping

Rapid Prototyping

3D-Druck eines Prototypen im Kundenauftrag, nach Ihren Wünschen und Vorgaben erstellt!
Rapid Prototyping

Rapid Prototyping

Wenn Ideen greifbar werden. Das einzigartige Gefühl, wenn man seine Idee zum ersten Mal als Prototypen in der Hand hält. Mankeplast macht das Virtuelle greifbar. Erst wenn man das Ergebnis von Strategie und Entwicklung in den Händen hält und sogar in den meisten Fällen realistisch testen kann, werden alle Einzelheiten wirklich sichtbar. Mittels Rapid Prototyping können innerhalb kürzester Zeit echte 3D Kunststoff-Modelle hergestellt werden. In verschiedenen Farben und mittels verschiedener Kunststoffe. Wenn Details entscheiden. Die Möglichkeit des 3D Rapid Prototyping versetzt Sie in die Lage, anhand von 3D-Modellen das Produkt für alle Projektbeteiligten bis ins Detail besser zu besprechen. Es kann sogar echte Emotionen auslösen, wenn es in seiner Haptik spürbar wird. Rational betrachtet, räumt es auch ganz einfach Missverständnisse aus. Ein echter Meilenstein, der Prozesse und Abstimmungsphasen verkürzt und Zeit sowie Kosten spart. Treffen Sie einfach schneller Entscheidungen.
Rapid Prototyping

Rapid Prototyping

Rapid Prototyping - schnelle Herstellung von Musterbauteilen Rapid Prototyping (Vakuumguss) Rapid Prototyping ist der Überbegriff über verschiedene Verfahren zur schnellen Herstellung von Musterbauteilen ausgehend von CAD-Konstruktionsdaten oder vorhandener Bauteile welche geändert und angepasst werden sollen. Das Ziel ist immer möglichst schnell brauchbare Werkstücke in seriennaher Qualität umzusetzen und zu vervielfältigen. Somit sind nicht nur neu entwickelte Teile, sondern auch ältere, nicht mehr zu bestellende Teile in kürzester Zeit in kleinen Stückzahlen (z.B. Oldtimer-Ersatzteile) herzustellen für welche teure Spritzwerkzeuge aus Stahl nicht mehr rentabel sind. Hierfür ist das Vakuumgießen das am besten geeignete Verfahren, da mit geringem Aufwand und einem kostengünstigen Silikonkautschuk ein form- und maßgenaues Werkzeug erstellt wird. Aus diesem Werkzeug lassen sich Bauteile aus seriennahem Kunststoff oder Gummi in zweistelligen Stückzahlen herstellen. Für das Vakuumgießen stehen derzeit folgende Materialien zur Verfügung: - Zweikomponenten-Gießharze (Kunststoffe) - Schmelzfähige Wachsmaterialien (für den Einsatz als Urmodell für den Feinguß) - Niedrigschmelzende Metalllegierungen Die Basis für die Herstellung ist der Prototyp. Er wird in einem Rahmen fixiert. Anschließend wird dieser Rahmen mit Silikonkautschuk ausgefüllt und unter Vakuum evakuiert. Dadurch entweicht die im Silikon enthaltene Luft und die Form erhält nach der Aushärtung die erforderliche Festigkeit. Nach dem Entformen des Urmodells wird die Form erneut geschlossen und unter Vakuum mit dem gewünschten flüssigen Material gefüllt. Nach dem Aushärten des Kunststoffes werden die erzeugten Teile entformt und gefinisht. Anschließend steht die Form für weitere Abgüsse zur Verfügung. Für die Aufbereitung, Herstellung oder Restaurierung der unterschiedlichsten Bauteile und Silikonformen ist selbstverständlich eine langjährige, berufliche Erfahrung von großem Vorteil. Die Vakuumgießtechnik hat folgende Vorteile: - Kostengünstige Formherstellung - Kurzfristige Formherstellung - Hinterschnitte herstellbar (Silikonform beliebig häufig teilbar, elastisch) - leichte Entformbarkeit - hohe Vervielfältigungsgenauigkeit - Einbindung von Norm- und Formteilen (zum Beispiel Schrauben, Muttern u. ä.) in die Kunststoffteile während des Abgussvorgangs möglich - Prototyp kann nach Entnahme aus der Silikonform wieder verwendet werden - Oberflächen können lackiert, beledert oder verchromt werden Die Effektivität des Verfahrens kann durch die gleichzeitige Abformung von mehreren Teilen in einer Form (Mehrfachform) erhöht werden.
Prototyping

Prototyping

Greifbare Modelle stehen nach Abstimmung schnell zur Verfügung. Prototyping Greifbare Modelle stehen nach Abstimmung schnell zur Verfügung Wir haben Erfahrung im Bereich der kompletten Gehäuse-Bandbreite. Nichts kann das "greifbare" Modell bzw. den funktionstüchtigen Prototypen ersetzen. Hier kommen aktuelle Rapid-Prototyping-Verfahren zum Einsatz. Aber auch der Einsatz der CNC-Blechverarbeitung und CNC-Fräsen sind in dieser Projektphase Verfahren, die ein sehr nahes Serienergebnis ermöglichen. All diese Möglichkeiten versetzen uns in die Lage, Ihnen den kompletten funktionstüchtigen Prototypen mit der von uns entwickelten und produzierten Hardware zu liefern. Auf der Basis der Prototypen werden wir die Herstellkosten für das Gehäuse mit Blick auf die Serie analysieren und entsprechende Vorschläge ausarbeiten.
Rechenmodelle für präzise Simulationen und technische Analysen | Structalys

Rechenmodelle für präzise Simulationen und technische Analysen | Structalys

Structalys bietet die Entwicklung und Anwendung von Rechenmodellen, die Unternehmen dabei unterstützen, komplexe technische Fragestellungen präzise zu simulieren und zu analysieren. Rechenmodelle sind unverzichtbare Werkzeuge für Unternehmen im Maschinenbau, der Luft- und Raumfahrt, der Automobilindustrie und in weiteren technischen Branchen, da sie die Grundlage für fundierte Entscheidungen in der Produktentwicklung und Optimierung bilden. Unsere Experten erstellen maßgeschneiderte Rechenmodelle, die exakt auf Ihre spezifischen Anforderungen abgestimmt sind und dabei helfen, Risiken zu minimieren und die Effizienz zu maximieren. Merkmale und Vorteile: Hohe Genauigkeit: Präzise Modellierung von physikalischen Prozessen für verlässliche Ergebnisse. Kosteneffizient: Reduziert den Bedarf an physischen Prototypen und realen Tests. Vielfältige Anwendungsgebiete: Von der Strukturanalyse bis hin zur thermischen Simulation bieten Rechenmodelle Unterstützung in zahlreichen technischen Bereichen. Individuelle Anpassung: Erstellung von Modellen, die spezifisch auf die Anforderungen Ihres Projekts zugeschnitten sind. Schnelle Iterationen: Erlaubt schnelle Anpassungen und Optimierungen, um die Entwicklungszeit zu verkürzen. Unsere Rechenmodelle ermöglichen es Ihnen, komplexe Szenarien und Umgebungen virtuell zu testen, bevor Sie Ressourcen in die reale Umsetzung investieren. Vertrauen Sie auf Structalys, um Ihr Projekt auf eine wissenschaftlich fundierte Basis zu stellen. Jetzt unverbindlich informieren und effiziente Rechenmodelle für Ihr Projekt entdecken!
3D Druck Modelle aus ABS (Qualitätsprodukt Original Stratasys)

3D Druck Modelle aus ABS (Qualitätsprodukt Original Stratasys)

Wir drucken mit ABS ihr 3D Modell. Mit unserer Stratasys Maschine erzielen wir qualitativ hochwertige Drucke. Die Nachveredelung ist möglich. Der Bauraum beträgt ca. 200 mm x 200 mm x 300 mm.
3D-MODELLIERUNG

3D-MODELLIERUNG

3D-Vermessungsleistung, 3D-Modellierung, Bestandsaufnahme von Bauwerken und Anlagen, Stahlbauvermessung, Anlagenvermessung, Gebäudebestandserfassung, 3D-Laserscan, 3d-Vermessung, Laserscanvermessung Schlagworte Laserscanning Vermessung 3D-Modellierung Modellierung Anlagenvermessung Bestandsaufnahme Architektur Ingenieurbüro 3D-Vermessung Bestandserfassung Laserscan 3D-Dienstleistung Aufmass Vermessungsleistung Planerstellung 3D-Messinstrumente
3D Druck PolyJet / Multjet Modeling (MJM):

3D Druck PolyJet / Multjet Modeling (MJM):

Sie haben bereits fertige Druckdaten aber keinen eigenen 3D-Drucker? Kein Problem, rufen Sie uns an und wir besprechen, ob ihre Daten und unsere Drucker kompatibel sind. Ein polymerer Flüssigkunststoff wird in dünnen Schichten ab 0,016mm aufgetragen und mit UV-Licht ausgehärtet. Für hochgenaue funktionale Prototypen, Erstmuster, Modelle mit filigranen Geometrien aus festen bis gummiartigen Materialien.
Gießereimodelle

Gießereimodelle

Wir haben unser Qualitätsbewusstsein auf alle Arbeitsbereiche übertragen, denn wir sind überzeugt davon, dass Qualität sich durchsetzt. Wir entwickeln, konstruieren und fertigen Ihre Formen,Vorricht.
FDM (Fused Deposition Modelling) – Schmelzschichtungsverfahren

FDM (Fused Deposition Modelling) – Schmelzschichtungsverfahren

Beim FDM-Druckverfahren werden Kunststofffilamente als Ausgangsstoff verwendet. Als Filamente bezeichnet man im 3D Druck thermoplastische Kunststoffe, die in Form eines Fadens auf Rollen konfektioniert sind. Diese Rollen werden so im FDM-Drucker platziert, dass die Kunststofffäden durch eine beheizte Düse geführt werden. Durch die Wärme der Düse schmilzt der Kunststofffaden bis er einen fast flüssigen Aggregatzustand erreicht und wird dann durch die Öffnung dieser feinen Düse gepresst. Diese in der Fertigungsebene frei bewegliche Düse trägt den flüssigen Kunststoff nun schichtweise auf die Trägerplattform im beheizten Bauraum auf, wo er schnell abkühlt und aushärtet, und so die gewünschte Form, auch komplexer Werkstücke, bildet. Durch Absenken der Trägerplattform wird nun Schicht um Schicht entsprechend der Schichten des einprogrammierten 3D Modells das Werkstück aufgebaut. So entsteht ein reales Modell. Dadurch, dass der Bauraum beheizt wird, wird die Verbindung der einzelnen Schichten unterstützt und die Feuchtigkeit wird dem Filament entzogen. Des Weiteren sorgt ein Trockner dafür, dass sich beim Bau des Werkstücks keine Blasen im Material bilden. Damit auch überstehende Strukturen gedruckt werden können, kommt neben dem eigentlichen Kunststofffilament auch ein Stützmaterial zum Einsatz, das nach Fertigstellung des Modells wieder entfernt wird. Massive Bauteile können mit diesem Verfahren auch als Hohlkörper mit Stützstruktur gedruckt werden, um Material, Gewicht und Herstellungszeit zu sparen. Eignung: FDM-Modelle sind hauptsächlich als funktionsfähige Bauteile und Baugruppen geeignet. Dieses Verfahren eignet sich besonders dann, wenn eine nahezu völlige Verzugsfreiheit der zu bauenden Geometrien im Vordergrund steht. Vorteile • Schnelle und kostengünstige Erstellung von Prototypen und Kleinserien • Komplexe, geometrische Strukturen mit Hilfe von Stützmaterial möglich • Langlebige, stabile Bauteile mit bleibenden akkuraten Abmessungen • Druckmodus „Sparse“ ermöglicht das Drucken eines massiven Bauteils als Hohlkörper mit Stützstruktur und spart so Material, Gewicht und Herstellungszeit Nachteile • Durch die Extrusion entstehen sichtbare Strukturen auf der Oberfläche • FDM Modelle werden einfarbig gefertigt FDM im Überblick Bauraum: max. 406 x 355 x 406 mm Schichtdicke: zwischen 0,13 und 0,25 mm Wandstärke: 1,00 mm Toleranzen: ± 0,1% (min. ± 0.3 mm) Produktionszeit: օ օ օ օ օ (3) Kosten: օ օ օ օ օ (3) Anwendungsgebiete: • Automobilbranche • Luft- & Raumfahrt • Industrieanwendungen Materialien & Eigenschaften (Richtwerte abhängig von Bauteilgeometrie, Werkstoffzusätzen & Umgebungseinflüssen) ABS – Acrylnitril-Butadien-Styrol ABS ist ein thermoplastischer Kunststoff, der in Form eines Fadens auf Rollen konfektioniert ist. Kurzbeschreibung: einfarbiger Feststoff Aggregatzustand: fest Zugfestigkeit: XZ: 32 MPa / ZX: 28 MPa Zugdehnung: XZ: 7,0% / ZX: 2,0% Biegespannung: XZ: 60 MPa / ZX: 48 MPa Wärmeformbeständigkeit: 96°C PC - Polycarbonat PC ist ein thermoplastischer Kunststoff, der in Form eines Fadens auf Rollen konfektioniert ist. Kurzbeschreibung: weißer Feststoff Aggregatzustand: fest Zugfestigkeit: 57 MPa Zugdehnung: 4,08% Biegespannung: 104 MPa Wärmeformbeständigkeit: 138°C Nachbearbeitung / Finishing: Unsere FDM Modelle werden von uns bereits von den Stützstrukturen befreit und können ohne weitere Nachbearbeitung eingesetzt werden. Nichtsdestotrotz können wir Ihnen folgende Nachbearbeitungsmöglichkeiten anbieten, um Ihr Modell Ihren Vorstellungen an Oberflächenqualität und Farbe anzupassen: • Infiltration • Schleifen • Spachteln • Lackieren • Verkleben • Anbringen von Bohrungen • Einschneiden von Gewinden
Visualisierung von 3D Hände als Modell

Visualisierung von 3D Hände als Modell

Realistische Hände und Gliedmaßen in 3D animiert Technische Produkte sind einfach zu animieren. Diese sind oft statisch und der Bewegungsablauf ist linear. Deutlich aufwendiger ist die Visualisierung von animierten 3D Händen. Also 3D Modelle einer Hand in die richtige Position zu bringen. Dies ist sehr aufwändig und wird daher gerade in 3D Animationen weggelassen, bzw. durch andere Techniken wie Pfeile oder Hinweiselemente ersetzt. In einer speziellen Kundenumsetzung für einen Leitungsauslass im Boden sollte es aber mit 3D Händen realisiert werden. Hier kam es speziell auf die richtige Grifftechnik der einzelnen Finger an, welche Bild für Bild erklärt werden sollte. Galerie von 3D visualisierten Händen Um Kunden die richtige Grifftechnik zu erläutern, wie ein Leitungsauslass im Boden richtig geöffnet werden muss, wurden mehrere 3D Renderings von zwei animierten Händen erstellt. Die Bilder erklären in der jeweiligen Reihenfolge wie ein Hebel geöffnet und schlussendlich der Deckel herausgehoben werden kann. Rigged 3D Modell einer Hand Um eine menschliche Hand in 3D animieren zu können, muss das 3D Modell der Hand „gerigged“ sein. Das bedeutet, dass jeder einzelne Finger und jedes Gelenk sich drehen und neigen lassen und die Haut sich aber entsprechend mit dehnen muss. Diese Technik wird im 3D Bereich rigging genannt. Ist das 3D Modell einmal entsprechend aufbereitet, kann jeder Finger einzeln animiert werden. Und selbst das ist recht komplex und zeitaufwändig. Rigged 3D-Modell einer Hand Textur von menschlicher Haut Die Haut von Menschen ist in 3D sehr speziell darzustellen. Anders als metallische Oberflächen spiegelt sie sich nicht, leuchtet aber etwas von innen heraus. Ebenso sind kleine Punkte, Adern und Falten zu sehen. Oftmals wirken Hautoberflächen in 3D sehr plastisch und künstlich. Durch die richtigen Einstellungen gerade in Verbindung mit dem Lichtsetup wird eine realistischere Darstellung erreicht. Textur von menschlicher Haut Jeden Finger einzeln animiert Um die richtige Griffhaltung darzustellen, wird jeder einzelne Finger und jedes einzelne Gelenk so lange gedreht bis es richtig sitzt. Im 3D Modell lassen sich die Gelenke entsprechend drehen und die Haut dehnt sich mit. Damit es auch realistisch aussieht, dürfen die Finger natürlich nicht unnatürlich überdreht oder gebogen werden. Immer wieder eine Freude, die Herausforderung unserer Kunden anzunehmen. 3D Animation von Händen und Finger 3D Visualisierungen professionell erstellen lassen
Dreidimensionales Fräsen von Urmodellen

Dreidimensionales Fräsen von Urmodellen

3D-Fräsarbeiten von Prototypen und Urmodellen aus Uriol- und Schaumpolymerwerkstoffen im Verfahrwegbereich. (1700x900x250mm)
Models

Models

Models für Klassische Modenschauen (Fashion-Shows) Dessous - Modenschau Bademoden Show Catwalk Produkt-Präsentationen Galas Club-/Shoperöffnungen Presse-/Promoveranstaltung Sie suchen Foto-, Laufsteg- oder Showmodels? Sie möchten eine Modenschau für Ihre Kunden zu einem stilvollen Erlebnis werden lassen? Sie planen eine Präsentation in besonderem Ambiente? Oder suchen Sie einfach eine kreative und gute Fashion-Show für Ihre Veranstaltung? Mit unseren Models, erwacht das pralle Leben an Ihrem Event und schafft für Ihre Besucher eine Atmosphäre, bei der das Kaufen zur angenehmen Nebensache gerät. Nutzen Sie unsere Kartei, um Ihren idealen Modeltyp für Ihr Event zu finden.
Fused Deposition Modeling (FDM): Verwandlung von Filament in Bauteile mit industrieller Stärke

Fused Deposition Modeling (FDM): Verwandlung von Filament in Bauteile mit industrieller Stärke

FDM ist eine auf Filament basierende Technologie, bei der ein temperaturgesteuerter Kopf eine thermoplastische Materialschicht auf eine Bauplattform aufbringt. Bei Bedarf wird eine Stützstruktur aus einem wasserlöslichen Material erzeugt. Mit FDM lässt sich nahezu jede erdenkliche Geometrie erzeugen. Aus diesem Grund finden Sie FDM-Bauteile als Funktionskomponenten in Flugzeugen, als Produktionswerkzeuge in Automobilwerken und als Prototypen nahezu überall.
Präzisionsteile für den Modellbau

Präzisionsteile für den Modellbau

Wir fertigen Präzisionsteile für den Modellbau von ø 4 - 65 mm, bis zu einer Gesamtlänge von 350 mm. Insbesondere können wir Querbohrungen, Einstiche, Fräsungen, Mehrkantdrehen realisieren. Wir fertigen für Sie Stangen- und Wellenteile von ø 4 - 65 mm, bis zu einer Gesamtlänge von 350 mm. Insbesondere können Querbohrungen, Einstiche, Fräsungen, Mehrkantdrehen sowie komplizierte Geometrien ausgeführt werden. Egal ob Sie von Ihrem Sonderteil eine Null-, Klein- oder Großserie benötigen, wir garantieren Ihnen kurzfristige Lieferzeiten und eine besonders wirtschaftliche Herstellung. Unser neuer Maschinenpark zeichnet sich durch hohe Flexibilität, besonderer Wiederholgenauigkeit und kurzen Bearbeitungszeiten aus. Das bedeutet für Sie eine wirtschaftliche Fertigung von einfachen Werkstücken oder auch von geometrisch komplexen Teilen aus hochfesten Stählen mit eng tolerierten Maß- und Oberflächenvorgaben.
Ausarbeitung von einfachen Arbeitszeichnungen bis hin zu 3D-Modellen nach Kundenanforderung

Ausarbeitung von einfachen Arbeitszeichnungen bis hin zu 3D-Modellen nach Kundenanforderung

Unsere qualifiziertes Konstruktionsteam kann Ihnen alle möglichen Lösungen im Bereich des Engineering anbieten.
Gießereimodelle

Gießereimodelle

An unseren Computer gestützten Arbeitsplätzen konstruieren wir nach Kundenwünschen Serien- und Handformmodelle. Haben Sie Schweißkonstruktionen, die umgewandelt werden sollen zum Giessereimodell? Wir beraten Sie umfangreich; geben Ihnen Hinweise auf Hinterschnitte, Teilung und Modellaufbau. Auf unserer CNC-Maschine werden die Modelle gefräst und von unseren Mitarbeitern auf Formplatten inklusive Anschnittsystem montiert.
Process Consulting, Modelling, Optimization

Process Consulting, Modelling, Optimization

Solutions & Services IT-Strategie Interim Management IT Strategische Planung IT Transformation Prozessmanagement Prozessberatung, Modellierung, Optimierung Mobilität SAP Fiori Cloud IT-Optimierung Anwendungshosting Cloud-Services SAP ERP Logistik & Finanzen SAP ERP Kundenservice SAP Global Trade Services SAP S/4HANA SAP-Entwicklung Lösungen SAP-ERP-Dispositionscockpit SAP-ERP-Auftragsmonitor SAP-ERP-Verpackungscockpit (HUM) SAP-ERP-Service-Potenzialanalyse Managed Services Anwendungssupport Operations-Support MS Backoffice-Lösungen Kundendienst & Support Rechenzentrum-Betrieb SAP-Basis Beschaffung Aufforderung zur Angebotsabgabe
Fused Deposition Modelling (FDM)

Fused Deposition Modelling (FDM)

3D-.Druck für diejenigen, deren Ideen keine Grenzen kennen. Prototyping, Kleinserien und Sondermodelle. Wir realisieren Ihre Vorstellung! Das Fused Deposition Modeling (FDM) ist ein auf Extrusion basierendes 3D-Druck-Verfahren. Mit einer beheizten Düse, dem Extruder, werden Filamente (Kunststoffstäbe) geschmolzen und Schicht für Schicht aufgetragen. Auf einer Werkebene (Druckbett/Bauplattform) entsteht das 3D gedruckte Bauteil. Mit dem FDM Verfahren sind gedruckte Bauteile kostengünstig und schnell hergestellt. Deshalb eignet sich dieses 3D-Druck Verfahren gut für Prototypen oder für den Modellbau. Zudem stehen verschiedenste Materialien zur Verfügung!
Fused Deposition Modelling (FDM)

Fused Deposition Modelling (FDM)

Gedruckt wird auf Druckern von Markforged. Das Basismaterial kann dabei mit einem von 4 endlos Fasermaterialien verstärkt werden. KOHLEFASER: Höchstes Festigkeits-Gewichts-Verhältnis und höchste Wärmeleitfähigkeit KEVLAR®: Höchste Abrieb- und Schlagfestigkeit GLASFASER: Bestes Festigkeits-Kosten-Verhältnis und elektrisch isolierend HIGH TEMP. GLASFASER: Bestes Festigkeits-Kosten-Verhältnis. Belastbar bis 105 °C Umgebungstemperatur und bis zu 140 °C Wärmebeständig Einsatzbereche: Betriebsmittel, Prototypen, Mockups, Ersatzteile, Werkzeuge, Montagevorrichtungen und vieles mehr.
Modell- und Prototypenbau

Modell- und Prototypenbau

Unser Kerngeschäft seit 1972 ist die Herstellung und Fertigung von Urmodellen, Funktionsprototypen, Designmodellen und Musterbauteilen Zur Fertigung von Modellen und Prototypen stehen uns eine Vielzahl an unterschiedlichen technischen Verfahren zur Verfügung. Durch die Kombination der Verfahren im eigenen Haus und die dadurch entstehenden Synergieeffekte schaffen wir unseren Kunden einen echten Zeit- und Kostenvorteil in dieser heiklen und zeitsensiblen Phase vor der Serienreife eines Produktes.
Inkjet (MJM Multijet Modelling)

Inkjet (MJM Multijet Modelling)

Inkjet (MJM Multijet Modelling) Ideal für passgenaue und bewegliche Baugruppen Vorteile • Funktionale Prototypen / Baugruppen • Hohe Flexibilität bei geringen Wandstärken (z.B. Rastnasen) • Hohe Präzision / Hochauflösende Teile • Komplizierte und komplexe Formen • Glatte und detaillierte Oberflächen • Lackierbar / Einfärbbar • Hohe Festigkeit • Formstabilität • Klebbar • Transparent • Lange Haltbarkeit • Gewinde bis M3 druckbar • Innere Kanäle druckbar durch wasserlöslichen Support Eigenschaften • sehr hohe und einfache Detailtiefe • stark reduzierte und sehr große Bauteile • hohle und leichte Objekte • einzigartige Geometrien Flexibel Federn, Einrastvorrichtungen, Muttern und Gewinde sind möglich Fest für Fixier- & Montagevorrichtungen, Gussformen für Prototypen Transparent Sichtprüfung der inneren Struktur Haltbar Formstabil unabhängig von der Materialdicke Technische Details • Min. Wandstärke: 0,2mm • Max. Bauraum: 297x210x200mm • Schichtstärke: 15 μm hohe Auflösung • 20 μm normale Auflösung Materialien • AR-M2 • Silikone: • AR-G1L, 35 shore (A), 200°C • AR-G1H, 65 shore (A), 150°C Materialien: AR-M2, Silikone Max Bauraum: 297 x 210 x 200 mm Min Wandstärke: 0,2 mm Schichtstärke: 15 μm hohe Auflösung, 20 μm normale Auflösung
Innovative 3-D Konstruktion, Design und Modellierung mit SUPER-FILAMENT

Innovative 3-D Konstruktion, Design und Modellierung mit SUPER-FILAMENT

In der Welt der 3-D Konstruktion, des Designs und der Modellierung setzt SUPER-FILAMENT, eine exklusive Marke der Additive Materials GmbH, Maßstäbe für Innovation und Kreativität. Unsere Leistungen erstrecken sich über verschiedene Anwendungsgebiete, um Ihnen bei jedem Schritt Ihrer gestalterischen Prozesse unübertroffene Unterstützung zu bieten. Chargenübergreifende Präzision und Farbtreue: Unsere filigrane 3-D Konstruktion, das Design und die Modellierung erfordern höchste Präzision und Farbtreue. Bei SUPER-FILAMENT legen wir Wert auf chargenübergreifende Qualität, damit Ihre kreativen Visionen stets exakt und in den gewünschten Farben umgesetzt werden können. Breites Materialportfolio für kreative Freiheit: Unser umfangreiches Standard-Produktportfolio umfasst eine Vielzahl von Materialien, darunter Klassiker wie PLA, PET-G, ASA, ABS, sowie innovative Optionen wie Nylon (PA6, PA12), TPU, PPS, HIPS, PP und High Performance Biopolymere. Dies ermöglicht Ihnen, Ihrer kreativen Freiheit in der 3-D Konstruktion und Modellierung nahezu grenzenlosen Raum zu geben. Faserverbundvarianten für besondere Anforderungen: Für Projekte mit speziellen Anforderungen bieten wir Faserverbundvarianten an, die mit Glasfasern, Carbonfasern oder Aramidfasern angereichert sind. Diese Option ermöglicht es Ihnen, Modelle mit optimierten Materialeigenschaften zu konstruieren und zu designen. Kundenspezifische Gestaltung und Konstruktion: Wir verstehen, dass jede 3-D Konstruktion und jedes Design einzigartig ist. Daher bieten wir nicht nur eine breite Palette an Standardmaterialien, sondern auch die Möglichkeit der kundenspezifischen Herstellung. Entscheiden Sie über Material, Farbe, Spulentyp und Gebindegröße, um Ihre individuellen Visionen umzusetzen. Einhaltung höchster Qualitätsstandards: Unsere Filamente erfüllen alle relevanten Qualitätsstandards, einschließlich REACH und RoHS. Bei SUPER-FILAMENT setzen wir auf höchste Qualität, damit Sie in Ihrer 3-D Konstruktion und Modellierung stets auf erstklassige Materialien vertrauen können. Persönlicher Ansprechpartner für Ihre Projekte: Um sicherzustellen, dass Ihre 3-D Konstruktion, das Design und die Modellierung reibungslos verlaufen, steht Ihnen stets ein persönlicher Ansprechpartner zur Seite. Wir legen Wert auf kurze Antwortzeiten und kompetente Beratung, um Ihre kreativen Projekte optimal zu unterstützen. Mit SUPER-FILAMENT erleben Sie innovative 3-D Konstruktion, Design und Modellierung, die Ihre kreativen Ideen zum Leben erwecken. Vertrauen Sie auf unsere Erfahrung und Qualität für herausragende Ergebnisse in jedem gestalterischen Prozess.
3D-Modellierung / 2D-CAD-Zeichnungen / Building Information Modeling (BIM)

3D-Modellierung / 2D-CAD-Zeichnungen / Building Information Modeling (BIM)

3D-Laserscanning ist der schnellste und effizienteste Weg, um präzise Bestandsdokumentationen zu erzeugen. Unter Verwendung der vorhandenen Punktwolkendaten können wir qualitativ hochwertige 3D-Modelle der Einrichtungen, Apparate und Objekte in jeder Ebene der Anlage erzeugen, sowie 2D Dokumentationen, Rohrleitungspläne, Lagepläne, Isometrien, MTO / BOM. Wir liefern Modelle für alle wichtigen Design-Plattformen wie PDS, PDMS, Smartplant 3D, AutoCAD und Microstation und können äußerst flexibel auf die Anforderungen des Projektes reagieren.