Finden Sie schnell magnete für Ihr Unternehmen: 22 Ergebnisse

Magnete für Elektromotoren

Magnete für Elektromotoren

Zugegeben: Im Grunde unseres Herzens sind wir Motoringenieure. Deshalb können wir uns für die Herausforderungen im Bereich der E-Mobilität so begeistern. Ob permanenterregter Synchronmotor (PSM), fremderregte Variante (FSM) oder Asynchronmotor (ASM) - BOMATEC ist vorne mit dabei.
Entmagnetisieren von Magneten

Entmagnetisieren von Magneten

AlNiCo- und Ferrit-Werkstoffe sind im Wechselmagnetfeld gut zu entmagnetisieren. Magnete aus Seltenen Erden lassen sich mit dieser Methode nicht vollständig entmagnetisieren. Um Permanentmagnete zu entmagnetisieren, wird ein Magnetfeld mit sehr hoher Feldstärke benötigt, denn Magnete bestehen aus Magnetwerkstoffen, die eine viel höhere Koerzitivkraft als Eisen oder Stahl aufweisen. Nach der eigentlichen Herstellung und Bearbeitung werden Magnete durch ein sehr starkes Magnetfeld, abhängig vom Magnetwerkstoff von bis zu 5 Tesla Feldstärke magnetisiert. Bei Magneten aus seltenen Erden ist das Magnetfeld von konventionellen industriellen Entmagnetisieranlagen nicht stark genug, um das Magnetmaterial in den magnetischen Ursprungszustand zu versetzen. Dies nicht zuletzt infolge der starken magnetischen Verankerung und der Magnetisierungskeimbildung. AlNiCo Das am leichtesten zu entmagnetisierende Magnetmaterial. Mit Feldstärken ab 350 kA/m ist eine vollständige Entmagnetisierung dieser Werkstoffe zu erzielen, ohne einen Nachteil der magnetischen Eigenschaften zu erhalten. Hart-Ferrit Hart-Ferrit-Magnete lassen sich am besten durch Erwärmen in einem Ofen mit über 450 °C entmagnetisieren. Zudem lassen Sie sich mit einer leistungsstarken Entmagnetisieranlage und ggf. mit entsprechenden Flusskonzentratoren gut entmagnetisieren. Hierbei werden Feldstärken von über 800 kA/m benötigt. Der Ausgangszustand wird bis auf geringe Restmagnetfelder erreicht. Die zurückgebliebenen magnetische Keime haben zur Folge, dass erhöhte Feldstärken zum Wiederaufmagnetisieren benötigt werden als bei im Ofen entmagnetisierten Magneten. Es ist kein Nachteil in den magnetischen Eigenschaften zu erwarten. Plastoferrit Plastoferrite enthalten nicht genügend hitzebeständige Kunststoffe als Bindemittel, was das Entmagnetisieren im Ofen ausschließt. Einzige Möglichkeit sind leistungsstarke Entmagnetisierer. Es ist kein Nachteil in den magnetischen Eigenschaften zu erwarten. Neodym Neodym-Magnete lassen sich auch durch ein sehr starkes Magnetfeld nur schlecht entmagnetisieren. Durch Erhitzen ist eine Entmagnetisierung leichter möglich. Das Material wird dadurch allerdings geschwächt. Nach einer Wiederaufmagnetisierung wird der Ausgangszustand nicht mehr ganz erreicht und die Leistung der Neodym-Magnete wird um etliche Prozente reduziert. Zudem sind diese Magnettypen meistens mit einer typischerweise galvanischen Beschichtung versehen, die ebenfalls Schaden nimmt. Abgesehen vom Erwärmen kann das Knock-down-Verfahren angewandt werden. Samarium Cobalt Verhält sich ähnlich wie die Neodym-Magnete. Das Material ist sehr spröde, jedoch bedarf es infolge seiner Korrosionsbeständigkeit keiner Beschichtung. Somit ist die Entmagnetisierung im Ofen die bevorzugte Methode, da zur Wechselfeldentmagnetisierung sehr hohe Feldstärken von über 4’000 kA/m benötigt würden. Auch wäre durch die Keimbildung keine vollständige Entmagnetisierung möglich. Auch hier verliert der Werkstoff bei der Entmagnetisierung durch Wärme etliche Prozente von seinen magnetischen Eigenschaften. Verzeichnis
Das Geheimnis der Kraft der Magnete

Das Geheimnis der Kraft der Magnete

Die magnetische Energie ist jene elementare Energie, von der alles Leben des Organismus abhängt. Magnete sind nicht nur ein wichtiger Bestandteil vieler Hightech-Konsumgüter und werden seit Jahren zum aktivieren von Energien und Prozessen verwendet, sondern auch für die Energiekreisläufe des Körpers. SABONA OF LONDON Kupfer-Magnetspangen sind mit zwei hochwertigen Samarium-Cobalt (SmCo) Magnete à jeweils 1700 Gauss ausgestattet. Samarium Kobalt Magnete gehören zur Gruppe der Seltene Erden Magnete und werden auch als Hochenergie-Magnete bezeichnet. Diese kraftvollen Permanentmagnete besitzen ausgezeichnete magnetische Eigenschaften. Sie werden u.a. auch für Elektronikprodukte, medizinische Geräte oder in der Automobilindustrie eingesetzt, wo maximale Kräfte respektive höchste magnetische Flussdichte gefordert sind. Die Magnetfeldstärke resp. die Magnetflussdichte wird in Tesla oder Gauss gemessen.
Permanent-LasthebemagneteTPM - Flachmaterial

Permanent-LasthebemagneteTPM - Flachmaterial

Tragfähigkeit: 100 - 3000 kg Tragfähigkeit: 100 - 3000 kg
Magnetschilder, damit Sie am Sonntag auch ohne Beschriftung ausfahren können!

Magnetschilder, damit Sie am Sonntag auch ohne Beschriftung ausfahren können!

Magnetschilder sollten wöchentlich vom Auto genommen, inkl. Untergrund sauber gereinigt und wieder angebracht werden. Nur so vermeiden Sie Langzeit-Lackschäden an Ihren Fahrzeugen.
Magnetpulverprüfung nach DIN EN ISO 9934

Magnetpulverprüfung nach DIN EN ISO 9934

Die Magnetpulverprüfung (auch bekannt unter Fluxtest, MP-Prüfung oder MT Test) ist eine Methode der zerstörungsfreien Werkstoffprüfung. Sie dient zum Nachweis von vorwiegend spaltartigen Materialtrennungen (z.B. Rissen) in der Oberfläche und im oberflächennahen Bereich geeignet. Prüfbar sind ferromagnetische Werkstoffe. Zur Anwendung des Magnetpulververfahrens muss das Werkstück im Prüfabschnitt magnetisiert werden. Eine optimale Fehleranzeige erhält man dann, wenn das magnetische Feld den Materialfehler senkrecht durchsetzt. Ein mögliches Verfahren zur Magnetisierung ist die Jochmagnetisierung. Der magnetische Fluss gelangt dabei über ein ferromagnetisches Joch in das Werkstück. Die Hauptfeldrichtung ist die Verbindungslinie der beiden Pole des Joches. Diese können als Einspannvorrichtung ausgebildet sein. So wird das gesamte Werkstück magnetisiert. Es können auch Handmagnete auf das Werkstück aufgesetzt werden, die dann den Bereich zwischen den Polen magnetisieren. Zum Nachweis von Rissen beliebiger Orientierung können zwei oder mehr Magnetisierungsarten in einem kombinierten Verfahren gleichzeitig eingesetzt werden. Prüfmittel Als Prüfmittel stehen farbige oder fluoreszierende Magnetpulver zur Verfügung. Fluoreszierende Magnetpulver haben die grösste Empfindlichkeit. Zu unterscheiden ist ausserdem zwischen der Nassprüfung (Trägermedium Wasser oder Öl) und der Trockenprüfung. Die Fehlernachweisfähigkeit ist bei der Nassprüfung am grössten. Trockenprüfung Der Prüfbereich wird mit einem Magnetpulver bestäubt oder das Prüfstück wird in einen Behälter getaucht, in dem die Partikel durch Luftwirbelung in der Schwebe gehalten werden (Wirbeltopfverfahren). Empfehlenswert ist die Trockenprüfung dort, wo eine Benetzung der Oberfläche vermieden werden muss, oder bei der Prüfung von heissen Teilen. Nassprüfung Das Magnetpulver, mit dem der Prüfabschnitt bespült wird, ist in einer Trägerflüssigkeit suspendiert. Es können kleinere Korngrössen als bei der Trockenprüfung verwendet und damit feinere Risse nachgewiesen werden. Verfahrensbeschreibungen Verfahrensbeschreibung fluoreszierend Verfahrensbeschreibung schwarz-weiss Produktinformationen (PDF) Untergrundfarbe MR 72 Reiniger MR 71 Prüfmittel MR 76 F Magnetpulverprüfung fluoreszierend Magnetpulverprüfung fluoreszierend 2 Magnetpulverprüfung Konzentrat
Magnetrücken Barcode Etiketten

Magnetrücken Barcode Etiketten

Die Kennzeichnung von Lagerplätzen zum Beispiel in Tiefkühlzonen wird mit Magnetrücken Barcode Etiketten gemacht. Muss die Tiefkühlzone eines Lagers im laufenden Betrieb mit Barcodes gekennzeichnet werden, so kann dies mit Barcode Etiketten, die anstelle eines Klebefilms einen Magnet haben sauber und einfach gemacht werden. Die Beschriftungsmöglichkeiten der Etiketten können denen mit Klebeschicht gleich gestaltet werden. Die Etiketten sind sehr robust und langlebig. E-Mail strico@strico.ch Telefon +41 43 377 30 10
Displays aus Acrylglas, Acryline, Namensschild aus Acrylglas mit Magnetbefestigung

Displays aus Acrylglas, Acryline, Namensschild aus Acrylglas mit Magnetbefestigung

Displays aus Acrylglas, Acryline, Namensschild aus Acrylglas mit Magnetbefestigung transparent 1mm, ideal für Hemden und T-Shirts ohne Brusttasche Dieses elegante Namensschild aus Acrylglas mit Magnetbefestigung ist ideal für Hemden und T-Shirts ohne Brusttasche. Papierstreifen sind praktisch einzuführen oder auszutauschen und das Namensschild ist dank dem Magneten einfach an der Kleidung anzubringen. Material: Acrylglas transparent Dicke: 1mm Breite: 70mm Höhe: 35mm Dicke Material: 1mm Art.Nr.:: 100036
Luftspulen

Luftspulen

Luftspulen sind wesentliche Komponenten in vielen elektronischen Anwendungen, da sie die Funktionalität von Schaltungen und Systemen unterstützen, ohne ein magnetisches Kernmaterial zu verwenden. Diese Spulen bestehen aus Drahtwicklungen, die ihre Form und Stabilität durch präzise Fertigungstechniken erhalten. Sie bieten eine optimale Lösung für Anwendungen, die hohe Frequenzen und geringe Verluste erfordern, wie z. B. in der Hochfrequenztechnik, Telekommunikation und der Medizintechnik. Bei Werap Electronics fertigen wir hochwertige Luftspulen, die den höchsten Standards in Bezug auf Präzision und Stabilität entsprechen. Unsere Luftspulen sind ideal für Anwendungen, bei denen eine geringe Induktivität und minimale Verluste entscheidend sind. Sie können kundenspezifisch angepasst und in verschiedenen Größen, Formen und Drahtstärken produziert werden. Die Fertigung erfolgt mit modernsten Technologien, um sicherzustellen, dass jede Spule exakt den Anforderungen des Kunden entspricht. Luftspulen haben den Vorteil, dass sie keine Sättigung oder Hystereseverluste aufweisen, da kein magnetischer Kern verwendet wird. Dadurch bieten sie eine hohe Effizienz und eignen sich besonders für Anwendungen, in denen eine verlustfreie Signalübertragung erforderlich ist. Unsere Luftspulen finden Verwendung in der Automobilindustrie, der Telekommunikation, der Medizintechnik sowie in Industrieelektronik-Anwendungen. Vorteile der Luftspulen: Kernlose Konstruktion: Keine Sättigung oder Hystereseverluste Hohe Effizienz: Optimierte Signalübertragung bei hohen Frequenzen Anpassungsfähig: Kundenspezifische Fertigung nach individuellen Anforderungen Langlebig und stabil: Formstabile Wicklungen für eine lange Lebensdauer Geringe Verluste: Minimaler Energieverlust für maximale Effizienz Anwendungsbereiche: Hochfrequenztechnik: Effiziente Signalübertragung in Hochfrequenzschaltungen Telekommunikation: Luftspulen in drahtlosen Kommunikationssystemen Medizintechnik: Präzise Spulen für medizinische Geräte Automobilindustrie: Luftspulen in Steuergeräten und Sensoren Industrieelektronik: Spulen für präzise Mess- und Steuerungssysteme Werap Electronics bietet Ihnen maßgeschneiderte Luftspulen, die exakt auf Ihre spezifischen Anforderungen abgestimmt sind. Wir verwenden nur die besten Materialien und modernste Fertigungstechnologien, um sicherzustellen, dass jede Spule höchste Qualität und Leistung bietet.
Antrieb

Antrieb

MECOS ist ein Enabler für die Technologien, welche die Megatrends vorantreiben Unsere Vision ist es, Energieumwandlungssysteme für aussergewöhnliche Umgebungen zu ermöglichen - hoch integriert und reibungsfrei. Unsere Mission ist es, aktive magnetische Lagerkräfte zu regeln und intelligente Elektronik zu entwickeln - für einen nachhaltigen Fortschritt bei Energieeffizienz, -umwandlung und -speicherung. Die MECOS-Technologie leistet wichtige Beiträge in den Bereichen Dekarbonisierung, Urbanisierung und technologischer Fortschritt. Wir nutzen die Fortschritte der Digitalisierung, um den Kundennutzen unserer Produkte und Dienstleistungen zu optimieren. Dekarbonisierung erfordert neue Technologien Die Industrie ist eine wichtige treibende Kraft bei der Dekarbonisierung. Das Ziel der Europäischen Union, bis 2050 kohlenstoffneutral zu sein, kann nur durch die Einführung neuer Technologien erreicht werden, die eine Umstellung der Industrie auf erneuerbare Energien ermöglichen. Erfahren Sie mehr darüber, wie MECOS-Technologien an diesem Übergang beteiligt sind.
Flachschleifen

Flachschleifen

Auf unserer Flachschleifmaschine können Ziersch ZT 510 können wir verschiedene Werkstoffe bearbeiten. Tischfläche: 1'000 x 500 mm (L x B) Abstand Tisch Spindelmitte: 600 mm Tischbeladung: max. 1'000 kg
Magnete in der Medizintechnik

Magnete in der Medizintechnik

Unsere Lösungen für die Medizintechnik Nichts ist wichtiger als unsere Gesundheit. Alles, was diesen Bereich betrifft, muss perfekt sein. BOMATEC ist sich dieser Verantwortung im Bereich der Medizintechnik bewusst. Deshalb unterliegen alle unsere Prozesse einer Kontrolle, wie APQP, PPAP, FMEA, SPC und MSA. Für Ihre Sicherheit. UNTERSTÜTZUNG BEI ENTWICKLUNG Engineering auf Augenhöhe Vieles ist schon erfunden. Dennoch ist es immer wieder sinnvoll, erneut darüber nachzudenken. Das ist genau das, was unsere Ingenieure für Sie tun. Wir unterstützen Sie bei der Entwicklung massgeschneiderter Magnete oder Baugruppen. Wir sind die Fachleute, wenn es um Material, Güte, Magnetisierung geht. Und darüber hinaus: Wir kennen Alternativen und schlagen Verbesserungen vor. Zertifizierung nach ISO 9001 | ISO 14001 | IATF 16949 Just in Time-Lieferung | Konsignationslager | Sicherheitsbestände Qualitätsmanagement QPL | QA | QST Volker Quast Head of Engineering
Unsere BOMATEC Magnete

Unsere BOMATEC Magnete

Die dürfen nicht fehlen Gesinterte NdFeB-Magnete Hitzebeständiger als NdFeB-Magnete Gesinterte SmCo-Magnete Hart wie Keramik Gesinterte Ferritmagnete Enorme Formgebungsvielfalt Kunststoffgebundene NdFeB-Magnete Formgebung entsprechend der Applikation Kunststoffgebundene SmCo-Magnete Keine weiteren Bearbeitungsschritte Kunststoffgebundene Ferritmagnete Der wesentliche Vorteil Kunststoffgebundene SmFeN-Magnete Vertrauensvolle Partnerschaft Sensormagnete Thermisch stabil und korrosionsbeständig Gesinterte AlNiCo-Magnete Hohe magnetische Stärke Gegossene AlNiCo-Magnete
Dauermagnete

Dauermagnete

Seit über 90 Jahren beschäftigt sich Maurer Magnetic mit Dauermagneten und Magnettechnik. Wir liefern nicht nur Magnete und Magnetsysteme aus dem Lagerprogramm, sondern fertigen individuelle Magnete und Magnetsysteme nach Kundenspezifikationen. In unserem Sortiment von rund 2000 Lagerpositionen finden bestimmt auch Sie Ihren optimalen Magneten. Oder haben Sie eine spezielle Anwendung? Wir beschaffen und lassen speziell auf Ihre Bedürfnisse zugeschnittene Dauermagnete und Dauermagnetsysteme fertigen gemäss Ihren Abmessungen und Spezifikationen.
Magnete Einheiten

Magnete Einheiten

Bezeichnung Kurzzeichen Einheit Definition bzw. Äquivalenz Länge Meter (m) Grundeinheit Zeit Sekunde (s) Grundeinheit Masse Kilogramm (kg) Grundeinheit Kraft Newton (N) 1 N = 1 kg ∗ 1 m/s Kilopond (kp) 1 kp = 9,81 N Arbeit Joule (J) 1 J = 1 N ∗ 1 m Leistung Watt (W) 1 W = 1 J/1 s Strom Ampere (A) Grundeinheit Spannung Volt (V) 1 V = 1 W/1 A Magnetischer Fluss Weber (Wb) 1 Wb = 1 V ∗ 1 s Maxwell (M) 1 M = 10 Magnetische Induktion Tesla (T) 1 T = 1 Wb/ m Gauss (G) 1 G = 10 Magnetomotorische Kraft Amperewindung (AW) 1 AW = 1A ∗ 1 Wdg. Gilbert (Gb) 1 Gb = 0,796 AW Magnetische Feldstärke Amperewindung/Meter (AW/m) 1 AW/m = 1 AW/ 1 m Oersted (Oe) 1 Oe = 79,6 AW/m Reluktanz Ampere/Weber (A/Wb) 1 A ∗ Wb = 1 mho/s Elektrischer Widerstand Ohm (n) 1 Ω = 1 V/ 1 A Elektrischer Leitwert Siemens (S) 1 S = 1 Ohm = 1 mho
Geeignete und ungeeignete Messgeräte für Restmagnetismus

Geeignete und ungeeignete Messgeräte für Restmagnetismus

Um Restmagnetismus an Bauteilen zu erkennen, ist ein geeignetes Messgerät erforderlich. Insbesondere bei begrenzten Magnetfeldern oder feinpoligem Restmagnetismus ist ein geringer Abstand der Messsonde zur Oberfläche des Bauteils wichtig. Anforderungen an ein Gerät zum Messen von Restmagnetismus: - Digitale Anzeige (Display) mit einer Auflösung von 0,1 A/cm, 0,01 mT oder 0,1 Gauss und geringem Drift. - Funktion zum automatischen Halten der höchsten gemessenen Werte und schnelle Abtastrate zur Bestimmung des maximalen Messwerts. Idealweise sollte das Gerät die Möglichkeit bieten, sowohl den Nord- als auch den Südpol zu speichern. - Gut erkennbarer Hall-Sensor, um eine genaue Positionierung auf der Bauteiloberfläche zu ermöglichen. - Sehr hilfreich ist eine LED, die bereits bei geringen Restmagnetismusfeldern (< 2 A/cm) anspricht, um keine Bereiche mit potenziellem Magnetfeld zu übersehen. Dadurch kann das erkannte Magnetfeld engmaschiger gescannt werden. - Der Hall-Sensor im Messgerät sollte möglichst nah an der Oberfläche angebracht sein, da sonst ein zu niedriger oder kein Magnetismuswert angezeigt wird. Eigenschaften einer geeigneten Sonde: - Der Abstand der Hall-Effekt-Zone zur Bauteiloberfläche beträgt etwa 0,5 mm. - Es sollte kein magnetischer Flusssammler vorhanden sein. - Die Sonde muss mechanisch stabil sein und präzise positioniert werden können. - Sie sollte schnell auf Magnetfelder ansprechen.
exklusiver Kupfer- & Magnetschmuck

exklusiver Kupfer- & Magnetschmuck

Qualität und Tradition seit 1959 SABONA OF LONDON ist seit über 60 Jahren in der Herstellung von Kupfer- und Magnet-Armbänder spezialisiert. Auserlesene Materialien, akkurate Verarbeitung und ein distinguiertes SABONA-Design sind die optimale Mischung für diesen ganzheitlichen, unvergleichlichen und funktionalen Schmuck. Exklusiver Damen und Herren Kupfer- & Magnetschmuck SABONA OF LONDON inspiriert mit einer trendigen Auswahl an reinen Kupfer Armbänder und Magnetschmuck aus hochwertigem Edelstahl mit kraftvollen Samarium Kobalt Magneten in vielen Kreationen. Ein exklusives Design, ob Spange oder Armband, klassisch, raffiniert, sportlich, trendigen Akzenten, in Kombination mit schillernden Kristallen oder ganz einfach zeitlose Eleganz, diese vielseitig tragbaren Schmuckstücke verleihen nicht nur jedem Outfit das gewisse Etwas. Bewährtes Kupfer & natürliche Energie SABONA OF LONDON Kupfer und Magnet Armbänder sind wertvolle Schmuckstücke, die nebst Eleganz durch variantenreiche Funktionalität und positive Effekte begeistern. Die aussergewöhnlich stilvollen Accessoires, ob aus bewährtem Kupfer oder erstklassigem Edelstahl mit hochwertigen Samarium Cobalt Magnete, deren Stärke sich zwischen 1200 - 1800 Gauss bewegen, vereinen angenehme Effekte, Individualität und einen hohen Tragkomfort. Die natürliche Energiequelle der SABONA OF LONDON Kupfer und Magnet Armbänder wird von Prominenten genau so geschätzt, wie von vielen begeisterten Trägern weltweit. Nicht umsonst sind Sabona-Armbänder die meist kopierten und imitierten Modelle. Neu im Sortiment SABONA OF LONDON Mund & Nasen Schutz Maske mit 8% Kupfer Hergestellt in drei Farben und zwei Grössen aus einer weichen, sehr leichten und extrem bequemen dreilagigen Polyestermischung mit antimikrobiellen Kupferanteil und einem Nasenbügel, damit die Form der Nasenpartie genau angepasst werden kann und gut um Nase und Wangenknochen abschliesst. Waschbar & Wiederverwendbar
Handtragklaue, magnetisch THM

Handtragklaue, magnetisch THM

Tragfähigkeit: 120 - 170 kg Tragfähigkeit: 120 - 170 kg
Permanent-LasthebemagneteTPM - Rundmaterial

Permanent-LasthebemagneteTPM - Rundmaterial

Tragfähigkeit: 50 - 1500 kg Tragfähigkeit: 50 - 1500 kg
Display für Kupfer & Kupfer-Magnet Armbänder

Display für Kupfer & Kupfer-Magnet Armbänder

Für Kupferarmbänder in Blister-Verpackungen Pro Aufhängung ca. 8 Armbänder Total Bracelets 32 (4 x 8 Stk) Dimension Höhe: 43.0 cm | Breite: 34.0 cm | Tiefe: 10.0 cm inkl. Display Acrylfuss 15.0 cm Grössen / Handgelenkumfang: Die Spangen können dem Handgelenk angepasst werden. Der Abstand zwischen den Enden sollte mindestens 1.00 cm sein. S = Handgelenkumfang ~ 14.5 - 16.5 cm M = Handgelenkumfang ~ 16.5 - 18.0 cm L = Handgelenkumfang ~ 18.0 - 19.5 cm xL = Handgelenkumfang ~ 19.5 - 21.0 cm xxL = Handgelenkumfang ~ 21.0 - 22.5 cm Kupferarmband verkleinern / vergrössern Wir empfehlen das Armband ans Handgelenk anzulegen oder mittels der Hände vorher etwas zu erwärmen - Verkleinern: durch einen konstant mässigen Druck auf die beiden Enden bis die Grösse passt und es sitzt. - Vergrössern: beide Enden mit einem konstant gleichmässig feinem Druck auseinander ziehen, um die Öffnung zu vergrössern.
Teslameter M-Test LL

Teslameter M-Test LL

Restmagnetismus auf ferromagnetischen Werkstoffen präzise und zuverlässig messen schnelles Auffinden von Restmagnetismus durch LED-Indikation an der Sondenspitze reproduzierbare Messresultate durch automatische Speicherung der Maximalwerte definierter Messabstand von 0,5 mm von der Hall-Sonde zur Messoberfläche messen von statischen- und Wechselmagnetfeldern umschaltbare Masseinheiten: A/cm, Gauss, mT verschleissfeste Prüfsonde
Teslameter M-Test MK4

Teslameter M-Test MK4

universelles Messgerät zur Messung im Luftspalt oder an schwer zugänglichen Stellen mit < 1 mm dünner Tangentialsonde Messung der aus der Oberfläche austretenden magnetischen Flussdichte von Dauermagneten zwei umschaltbare Masseinheiten: kA/m, mT Magnetfelder bis zu +/– 2 Tesla messbar automatisches Umschalten zwischen Gleich- und Wechselmagnetfeldern Universell Messgerät zur Messung magnetischer Felder Mit dem M-Test MK4 werden statische oder dynamische Magnetfelder präzise aufgespürt und gemessen. Die <1 mm dicke Tangentialsonde erlaubt genaue, punktuelle Messungen an schwer zugänglichen Stellen, Luftspalten oder an Oberflächen. Der M-Test MK4 eignet sich besonders zur Messung von Dauermagneten oder ferromagnetischen Kleinteilen. Magnetismus wird unmittelbar durch die sofort reagierende farbige LED angezeigt, indem die Oberfläche des Teils mit der Sonde abgefahren wird. Die Funktion «Peak Hold» wird durch die Drucktaste am Sondenkörper gesteuert; sie ermöglicht es, die Stellen mit der höchsten Feldstärke für jede Polarität leicht zu finden und festzuhalten.