Finden Sie schnell durchhärtung für Ihr Unternehmen: 1438 Ergebnisse

Epoxidharz Laminiersystem 110 min (niedrigviskos) | E111L

Epoxidharz Laminiersystem 110 min (niedrigviskos) | E111L

Das Epoxidharz-Laminiersystem E111L ist eine ungefüllte, niedrigviskose 2-Komponenten Kombination von Harz und Härter mit einer mittleren Verarbeitungszeit von ca. 110 Minuten. Eigenschaften und Einsatzgebiete: - Tränk- und Laminierharz mit sehr guter Benetzung der Verstärkungsfaser - Hohe Vernetzungsdichte - Kalthärtend, bei Raumtemperatur entformbar - Lösemittel- und füllstofffrei - Verbesserte physiologische Verträglichkeit - Erstellung von Dünnschichtlaminaten - Bindemittel zur Formteilerstellung
Flammhärten

Flammhärten

Mittels speziellen Hochleistungsbrennern wird die Randzone mit ­Leistungen bis zu 2500 kW rasch auf ­Härtetemperatur gebracht und je nach Werkstoff abgeschreckt. Werk­stoffabhängig können Einhärtungstiefen bis zu 40 mm realisiert werden. Vorteile des Flammhärtens • Leistungsbedarf kann einfach angepasst werden • Grosse Einhärtungstiefen realisierbar • Behandlung von sehr grossen ¬ Bauteilen möglich Anwendungsbereiche für Stahl- und Gussteile • Walzen, Wellen, Kolben, Rollen • Kurven • Grosse Zahnräder • Schienen und Leisten • Maschinenbetten • Zylinder (Innen-Ø) Bauteilabmessungen • Bis Ø 800 x 11 000 mm, max. 6 Tonnen • Bis Ø 1400 x 650 mm, max. 2,5 Tonnen • Kubische BT bis 10 000 mm • Maximales Gewicht 10 Tonnen • Grössere Teile auf Anfrage
Clou Acopur Härter 8199

Clou Acopur Härter 8199

Clou Acopur Härter 8199 2 Ltr. 8199.00000 Artikelnummer: E9170186 Gewicht: 2 kg
Ausscheidungshärtbare Stähle

Ausscheidungshärtbare Stähle

Spezielle Legierungen, die im nicht-gehärteten Zustand ein hohes Umformvermögen aufweisen und durch Ausscheidungshärtung sehr hohe Härte und Festigkeit erreichen können. Sie werden bei komplexen umgeformten Bauteilen mit sehr hoher Anforderung an Festigkeit und Korrosionsbeständigkeit eingesetzt. Bezeichnung EN DIN AISI Draht Stab Profil Band Rohr
Härten im Schutzgas

Härten im Schutzgas

Damit durch die Thermische Prozessführung eine Härtestei-gerung erfolgen kann, musste erst einmal Eisen gewonnen und mit dem dazu nötigen Kohlenstoff legiert werden. Heute ist der Begriff Härten genormt und bedeutet „Austeniti-sieren und Abkühlen mit solch großer Geschwindigkeit, dass eine Härtesteigerung durch Martensitbildung erfolgt“. Das Härten von Stahl ist eine Erhöhung seiner mechanischen Widerstandsfähigkeit durch gezielte Änderung seines Gefüges. In der Prozessführung unterscheidet man zwischen: - Oelhärten - Lufthärten Schutzgasverfahren - HÄRTEN / VERGÜTEN Anwendungsbeispiele: - Werkzeugbau Bauteile - Aludruckgussformen - Spritzgusswerkzeuge - Normalien - etc. Abmessungen: 300x300x590 mm / max. 80 KG
Härten/Richten

Härten/Richten

Das induktive Randschichthärten bis zu einem Durchmesser von 500 mm und einer Länge von 6.000 mm sowie das nachfolgende Anlassen im Wärmeofen ist in unserem Hause möglich. Wir können damit kurze Durchlaufzeiten und kontrolliert hohe Qualität auch bei gehärteten Bauteilen anbieten. Mit unserer Richtpresse sind wir in der Lage, Härteverzug umgehend zu korrigieren. Weitere Wärme- und Oberflächenbehandlungen werden bei anerkannten Fachfirmen vorzugsweise in unserer Nähe ausgeführt. Dabei können wir durch die Auswahl geeigneter Unternehmen sowie durch unsere permanente Qualitätskontrolle dauerhaft gute Qualität zu marktgerechten Preisen bieten. Hier eine Auswahl möglicher Behandlungen: Vergüten und Glühen, Einsatz- und Salzbadhärten, Nitrieren und Tenifieren, Verzinken und Phosphatieren, Brünieren, Eloxieren und Coatieren, Lackieren und Beschichten
Einsatzstähle

Einsatzstähle

sind eine Untergruppe von Einsatzstählen, die durch Wärmebehandlung eine erhöhte Festigkeit erhalten. Dies geschieht durch schnelles Abkühlen nach dem Erhitzen auf eine hohe Temperatur. Die Zugabe von Legierungselementen wie Chrom, Mangan oder Nickel verbessert dabei zusätzlich die Eigenschaften des Stahls. Vergütungsstähle zeichnen sich durch eine hohe Verschleißfestigkeit und gute Zähigkeit aus. Sie werden vor allem für Bauteile verwendet, die hohen Belastungen standhalten müssen, wie beispielsweise Getriebeteile, Bolzen, Wellen oder Federn. Durch die richtige Wahl des Vergütungsverfahrens können unterschiedliche Härtegrade und Festigkeiten erzielt werden, um den Anforderungen der jeweiligen Anwendung gerecht zu werden.
Härterei-Reinigungsanlagen

Härterei-Reinigungsanlagen

Eine NEUE GENERATION der Teilereinigung Standard-Reinigungsanlagen Durchlauf-Reinigungsanlagen Härterei-Reinigungsanlagen Rohr-Reinigungsanlagen Sonderanlagen Hybrid-Reinigungsanlagen Vorführ- & Gebrauchtanlagen Härtereianlagen für perfekte Reinigungsergebnisse Teilereinigung: sauber, schnell, schonend & wirtschaftlich Führende Härtereibetriebe bieten heute ein breites Spektrum an Oberflächenveredelungs- und Wärmebehandlungsverfahren, um den breit gefächerten Kundenwünschen gerecht zu werden. Einige dieser Verfahren stellen höchste Anforderungen an den Sauberkeitsgrad der zu behandelnden Teile. Genügt das Reinigungsergebnis nicht den strengen Vorgaben, ist bei der nachfolgenden Wärmebehandlung Ausschuss programmiert. Gefragt sind Reinigungsanlagen, die sowohl Ölverunreinigungen als auch angetrocknete anorganische Rückstände aus vorangegangenen Prozessen zuverlässig entfernen. Die innovativen Härterei-Reinigungsanlagen von EMO, die nach dem kombinierten VAIOCS-Verfahren arbeiten, kommen mit diesen Bedingungen bestens zurecht. Dank der Kombination von wässrigen mit lösemittelhaltigen Reinigungsstufen in einer Anlage erfüllen die gereinigten Teile höchste Anforderungen an den Sauberkeitsgrad und sind praktisch absolut fett- und salzfrei. Kein Wunder, dass heute der Großteil der führenden Härtereibetriebe auf die wegweisende Anlagentechnik aus dem Hause EMO setzt. Prospekt VAIOCS - exzellente Reinigung Die patentierte VAIOCS-Technologie ist das Markenzeichen der EMO Oberflächentechnik GmbH. Die Reinigungssysteme setzen weltweit Maßstäbe, wenn es um Fein- oder Feinstreinigung mit geringstem Restschmutzgehalt geht. Mit diesem Verfahren gelang EMO die Revolution ...
Härtung von Titan

Härtung von Titan

Bis zur Einführung von ExpaniteHard-Ti, einem interstitiellen Oberflächenhärtungsverfahren für reines und legiertes Titan, war die Oberflächenhärtung von Titan im kommerziellen Maßstab praktisch nicht möglich. Titan ist bekannt für sein geringes Gewicht, seine hohe Festigkeit und seine extreme Korrosionsbeständigkeit. Aufgrund seiner Weichheit ist Titan jedoch für seine schlechte Verschleiß- und Korrosionsbeständigkeit bekannt. Dies schränkt den Einsatz von Titan ein und zwingt Konstrukteure zu Kompromissen. Expanite bietet mit der Einführung von ExpaniteHard-Ti eine radikale Lösung. Interstitielles Härten - auch als Mischkristallhärten bekannt - bedeutet, dass Expanite das Grundmaterial nicht verändert, sondern lediglich Atome während des Wärmebehandlungsprozesses eindiffundiert, was zu einer erheblichen Härtesteigerung führt. Das bedeutet: keine Titannitride, keine Beschichtung und nichts, was von der Oberfläche abplatzen könnte! Mit ExpaniteHard-Ti kann die Oberflächenhärte ca. 800-1000HV erreichen, ca. 5-7 mal höher als bei unbehandeltem Material, ohne die Korrosionsbeständigkeit zu beeinträchtigen. Bemerkenswert ist die Auswirkung der Härte auf die Verschleißfestigkeit, dokumentiert durch einen Verschleißtest nach ASTM G133
Salzbadhärten

Salzbadhärten

Das Salzbadhärten ist eine Härtetechnik für hohe Verschleiß-Beständigkeit. VORTEILE   - sehr kurze Behandlungsdauer - stets zuverlässig reproduzierbare Qualitäts-Standards - optimal gesteigerte Lebensdauer der Werkzeuge und Bauteile - gleichmäßige Wärmezufuhr
Salzbadhärten

Salzbadhärten

Werkstücke werden vorgewärmt, anschließend in einer Salzschmelze auf Austenitisierungstemperaturen oberhalb 723°C gebracht und nach bauteilbezogener Durchwärmungs- und Haltezeit abgeschreckt. Salzbadhärten ermöglicht kurze Durchlaufzeiten, mit der Freiheit verschiedene Möglichkeiten der Abschreckung zu wählen. Dies ist für verzugs- und rissempfindliche Werkstücke von Vorteil und ermöglicht die Härtung komplizierter Bauteilgeometrien. Nachfolgendes Anlassen der Bauteile erhöht die Zähigkeit des Werkstoffes. Ofenmaße: Ø 500 x 700 mm
Induktives Härten vs. konventionelle Wärmebehandlung

Induktives Härten vs. konventionelle Wärmebehandlung

Dr. Andreas Klassen, Leiter Forschung & Entwicklung bei EMA Indutec, ist ein ausgewiesener Experte für numerische Berechnungen und die Simulation von Induktionsprozessen. Gemeinsam mit Florian Kickinger, Verfahrenstechniker im AICHELIN Neuanlagenbau, hat Februar 28, 2023
Induktivhärten

Induktivhärten

Bei konventionellen Härteverfahren wird das komplette Werkstück in Öfen aufgeheizt. Dies dauert relativ lange und bedingt einen mehr oder weniger starken Verzug. Bei den Induktivhärten hingegen wird nur der Verschleißbereich erwärmt und rasch wieder abgekühlt. Hierdurch wird in der Regel ein geringerer Verzug erreicht. Der Erwärmungsbereich kann millimetergenau gesteuert werden. Da nur die Randschicht gehärtet wird, bleibt das Bauteil mechanisch flexibler und kann auf den nicht gehärteten Flächen einfach nachbearbeitet oder auch gerichtet werden. Um noch flexibler und kundenorientierter am Markt aufzutreten, besitzen wir eine Mittelfrequenz-Induktivhärteanlage, mit der wir Längen von bis zu 4500 mm härten können.
Induktionshärten (Žilina, SK)

Induktionshärten (Žilina, SK)

Die Induktionswärmebehandlung übernehmen wir in Form unserer Sonderhärteanlage in Lietava Lúčka (Žilina). Weiters bieten wir auch Laserhärten an. Wir arbeiten auch mit dem Serienhersteller von Präzisionsteilen Premat zusammen. Anwendungen: Induktionshärten eignet sich besonders zum Oberflächen-, Teil- aber auch Schüttguthärten, Anlassen von Funktionsoberflächen von Bauteilen wie: Drehflächen (Wellen, Stifte, Riemenscheiben, Zahnräder, Buchsen, Lagerringe) sphärische Oberflächen (Kugelgelenke) ebene Flächen (Führungsschienen) Technologie Gegenwärtig haben wir Generatoren für die Hochfrequenz- und Mittelfrequenzheizung mit Auftragsmaschinen zum allmählichen Aushärten (max. Durchmesser 200 - 250 mm, max. Heizlänge - 2.000 mm) und zum einmaligen Aushärten. Diese Technologie ist prinzipiell für große Serien von Bauteilen geeignet, aber wir können auch einzelne Bauteile wärmebehandeln.
Induktivhärten – unsere Stärke

Induktivhärten – unsere Stärke

Von der Beratung über die Planung bis hin zur Fertigung sind wir Ihr zuverlässiger Partner. Wir stehen Ihnen beratend zur Seite, wenn es um Stahlauswahl und Wärmebehandlung geht, führen für Sie kostenlose Probehärtungen durch und helfen Ihnen gerne bei Versuchsreihen. Der Fertigungsprozess erfolgt effizient auf CNC-gesteuerten Härteanlagen mit perfekter Arbeitsgenauigkeit und Reproduzierbarkeit durch kompetente und gewissenhafte Mitarbeiter Rissprüfung durch Stichproben Rot-Weiß-Eindringprüfung Entspannen der Werkstücke in Anlassöfen bis 4 m³ Rauminhalt weiterführende Arbeitsgänge (Aufkohlen, Richten usw.) im Verbund mit Partner-Härtereien Zertifizierte Qualitätssicherung (Erst-, Schlussprüfung, laufende Kontrollen während der Produktion) Qualitätssicherung Neben der Erst- und Schlussprüfung führen wir während der gesamten Serienfertigung in erforderlichen Abständen Kontrollen durch. Sämtliche relevanten Daten werden nach unserem Qualitätshandbuch überwacht und dokumentiert. Unser Qualitäts-Management-System ist nach DIN EN ISO 9001 und unser Umweltmanagement nach DIN EN ISO 14001 zertifiziert. Die Härteprüfung erfolgt auf stationären und transportablen, digitalen Prüfgeräten. Mit einem speziellen Innenhärteprüfer werden die Werte von Bohrungen gemessen. Für die Überprüfung der Randhärtetiefe kann das Werkstück auf einem Nasstrennschleifer getrennt werden. Den Härteverlauf bestimmen wir mit einem Kleinlasthärteprüfer, der mit einem Video- Auswertungssystem ausgestattet ist. Die erreichten Werte können anschließend über PC dargestellt und ausgedruckt werden. Randhärtetiefe Die Randhärtetiefe kann in der Regel nicht zerstörungsfrei ermittelt werden. Die Tiefe ist erst nach dem Trennen des Werkstücks durch Messung des Härteverlaufes genau messbar. Falls diese Randhärtetiefe bei Einzelteilen absolut eingehalten werden muss, ist die Härtung und Prüfung eines Musterstückes erforderlich. Vorteile Überzeugende Vorteile – Wärmebehandlung nur im Verschleißbereich Nutzen Sie die Vorteile der induktiven Wärmebehandlung: Es lassen sich genau bestimmte Bereiche eines Werkstückes härten oder glühen. Exakte Begrenzung des Erwärmungsbereichs. Durch die partielle Erwärmung erreicht man weniger Verzug. Ungehärtete Bereiche können problemlos nachgearbeitet werden. Der Kern des Werkstückes bleibt weich, so ist ein späteres Richten möglich. Das Härteverfahren ist umweltfreundlich. Es werden keine Salze oder Öle eingesetzt. Die partielle Härtung bietet oft einen Kostenvorteil gegenüber einer Kompletterwärmung. Das Induktivhärten kann schnell und flexibel durchgeführt werden. Es sind keine zeitintensiven Ofenchargen notwendig. Technische Grenzen gibt es material- und konstruktionsbedingt für einige Werkstücke. Sprechen Sie mit uns. Wir beraten Sie gerne und finden die passende Lösung! Häufige Einsatzbereiche: Lager- und Dichtsitze an Wellen, Flanschen Ballen und Sitze an Walzen Schneidflächen an Maschinenmessern, Sägeblättern, Werkzeugen Bohrungen und Laufflächen an Rollen, Buchsen Zahnlücken und Zahnflanken an Zahnrädern, Zahnstangen und Kettenrädern Nocken und Lagersitze an Nockenwellen, Exzenterwellen Laufflächen an Führungsleisten, Schienen Laufflächen und Bohrungen an Kettenlaschen, Gabellaschen Schäfte und Kuppen an Bolzen, Schrauben usw. Funktionsweise Funkt
Härteofen

Härteofen

Ofen zum Glühen und Härten
Härteverfahren

Härteverfahren

Härteverfahren sind entscheidend für die Verbesserung der mechanischen Eigenschaften von Werkstoffen, insbesondere ihrer Festigkeit und Verschleißfestigkeit. Diese Verfahren werden häufig in der Automobil-, Luft- und Raumfahrt- sowie der Werkzeugindustrie eingesetzt, um die Lebensdauer und Leistung von Komponenten zu erhöhen. Härteverfahren umfassen eine Vielzahl von Techniken, darunter Induktionshärten, Einsatzhärten und Nitrieren. Die Härteverfahren der techniics GmbH bieten eine Kombination aus Präzision, Geschwindigkeit und Flexibilität. Unser erfahrenes Team nutzt modernste Technologien, um sicherzustellen, dass jedes Teil den höchsten Qualitätsstandards entspricht. Wir arbeiten eng mit unseren Kunden zusammen, um maßgeschneiderte Lösungen zu entwickeln, die ihre spezifischen Anforderungen erfüllen und gleichzeitig die Produktionskosten senken.
Induktiv Härten

Induktiv Härten

Beim Induktivhärten auf Centerless-, Universal- und Drehtelleranlagen wird die für die Gefügeumwandlung notwendige Wärme d. einen so gen. Induktor direkt im Werkstück innerhalb kürzester Zeit erzeugt Der grosse Vorteil dieses Verfahrens liegt darin, dass nur die Randzone an den verschleissgefährdeten Stellen einen Bauteils erwärmt werden muss. Deshalb sind Mass- und Formänderungen und die damit verbundene Nachbearbeitung der Werkstücke wesentlich geringer als beim konventionellen Härten. Beim anschliessenden Anlassen in Truhenöfen werden die entstandenen Spannungen soweit als möglich abgebaut.
Induktivhärten – unsere Stärke

Induktivhärten – unsere Stärke

Unser Team steht Ihnen gerne zur Verfügung. Wir bringen unsere Kompetenzen in der Wärmebehandlung anspruchsvoller Bauteile ein. Qualität und kurzfristige verbindliche Liefertermine sind unser Fokus.
Unsere Härterei härtet Metalle in SWISS MADE Qualität

Unsere Härterei härtet Metalle in SWISS MADE Qualität

Maschinenbauteile in der laufenden Produktion erfüllen nur dann die hohen Erwartungen, wenn diese langlebig und haltbar sind. Die Metallverarbeitung nutzt dafür jedwede Methode und Fertigungstechnik, die zu diesem Ziel führen. Angefangen mit der Metallurgie, welche die Grundvoraussetzung für Verarbeitung von Metallen schafft, werden neue Innovationen gezielt umgesetzt. Mithilfe unterschiedlicher Legierungszusätze ist es möglich, Metalllegierungen mit neuen Materialeigenschaften zu produzieren, welche den hohen Ansprüchen Ihres Unternehmens gerecht werden. Mit Analyse und Wissen über die verwendeten Werkstoffe veredeln wir die uns anvertrauten Werkstücke optimal. Als Spezialist und Fachmann auf diesem Gebiet hat sich die INDULASER AG einen ausgezeichneten Ruf erarbeitet und ist in puncto Härterei Ihr erster Ansprechpartner.
Elektronenstrahlhärten

Elektronenstrahlhärten

Die am meisten angewandte Form der Oberflächenbehandlung mit dem Elektronenstrahl. Die Oberflächenmodifikation kann bei härtbaren Stählen oder Gusseisen, welche entweder vollständig in der Festphase (ohne jedes Anschmelzen) oder auch über die Flüssigphase (mit Anschmelzen der Oberfläche) ablaufen. Durch den Wärmeeintrag wird das Gefüge austenitisiert und durch die anschließende Selbstabschreckung (ohne Fremdmedium) Martensit gebildet. Das Härten mit der Elektronenstrahl-Technik ist ein Kurzzeitprozess.
Härten

Härten

Automatisierte, CNC-gesteuerte Härteverfahren gewährleisten eine hohe Homogenität der Härteergebnisse auch bei großen Chargen. Anlassen der Teile, um die von Ihnen gewünschte Rockwell / Vickershärte zu erzielen, bis zu einer Maximallänge von 3 m. Härten von kleinen Teilen ab 5 mm bis zu sehr großen Teilen mit einer Maximallänge  von 3 m (Vertikal). Für Ihre speziellen Anforderungen stellen wir Spezialinduktoren her, damit optimale Härteergebnisse auch bei schwierig zu härtenden Teilen möglich werden.
LASERHÄRTEN MIT REESE

LASERHÄRTEN MIT REESE

Beim Laserhärten handelt es sich um ein Verfahren zur Randschichthärtung von einzelnen Funktionsflächen von Bauteilen. Ein Vorteil dieser Methode ist z.B. die Möglichkeit, die Randschicht von schwierigen Konturen zu härten. Durch den gebündelten Laserstrahl wird die jeweilige Bauteiloberfläche erwärmt. Der Temperatursturz wird via „Selbstabschreckung“ des Bauteils realisiert.
Induktionshärten

Induktionshärten

– in Genauigkeit und Steuerbarkeit weit überlegen. Gerade bei kompliziert geformten Werkstücken ist beim Härteprozess ein hohes Maß an Genauigkeit und Steuerbarkeit gefragt. Die gesamte Oberfläche eines Werkstückes kann gleichmäßig gehärtet werden oder es werden
Induktionshärten

Induktionshärten

Mit unserer CNC-Induktionshärteanlage werden in 3-Achsbearbeitung Werkstücke randschicht- oder durchgangsgehärtet. In einem Härteofen können wir unsere Teile spannungsarm glühen. Gerne übernehmen wir auch Ihre Induktionshärtearbeiten. Über erfahrene Härtereien lassen wir alle gängigen Materialbearbeitungen wie Nitrieren und Passivieren durchführen. Ab einer Seriengröße von 300 Teilen erledigen wir gerne Ihre Härteaufträge. zurück zu den Kernkompetenzen
Schutzgashärten

Schutzgashärten

Beim Schutzgashärten wird das metallische Bauteil unter Schutzgasatmosphäre auf die Härtetemperatur gebracht und anschließend im Ölbad rasch abgekühlt. In der Regel werden niedriglegierte Werkstoffe auf diese Weise veredelt. Vorteile des Verfahrens Kostengünstiges Härten Schutzgashärten ist ein vollautomatisches, zu 100 Prozent reproduzierbares und daher relativ kostengünstiges Härteverfahren. Keine Verzunderung Die Bauteile werden in einer Schutzgasatmosphäre vor einer negativen Beeinflussung der Randzone geschützt. Herausragende Bauteileigenschaften Beim Schutzgashärten entstehen durch das rasche Abschrecken im Öl Bauteile mit gleichmäßigem Härteniveau über den gesamten Querschnitt. Der Härteprozess für leistungsstarke Bauteile Das Schutzgashärten dient dazu, Werkzeuge aus Stahl eine wesentlich höhere Härte und bessere mechanische Eigenschaften zu verleihen. Niedriglegierte Werkstoffe und Kohlenstoffstähle sind aufgrund der Abkühldynamik für das Vakuumhärten nicht geeignet. Hier kommt das Schutzgashärten, bei dem das Bauteil mit Öl abgeschreckt wird, ins Spiel. Da eine Ölabschreckung wesentlich schroffer ist als eine Abkühlung mit Gas, ist mit einem höheren Verzug zu rechnen. Nachdem der fachgerechte Chargieraufbau der Anlage übergeben wurde, fährt er automatisch in den Härteofen. Da die Ofenkammer unter Schutzgasatmosphäre steht, entsteht keine Verzunderung. Welches Prozessgas zum Einsatz kommt, hängt vom jeweiligen Bauteil ab. Bei der anschließenden Abschreckung im Ölbad kann die Oberfläche leicht oxidieren. Durch eine nachfolgende Anlassbehandlung stellen wir die gewünschten Bauteileigenschaften präzise ein. So werden Standzeit und Lebensdauer Ihrer Produkte deutlich erhöht. Schutzgashärten eignet sich nicht für Bauteile mit scharfen Kanten oder großen Querschnittsunterschieden. Das Verfahren bietet höchste Reproduzierbarkeit.
Laserhärten

Laserhärten

Das Laserhärten ist ein Randschicht- Härteverfahren, welches mit einem sehr geringen Energieaufwand eine Härte von 55 – 60 HRC an der Bauteiloberfläche erzeugt. Bis zu 6 Meter
Induktives härten

Induktives härten

Das induktive Härten ist eine äußerst wirtschaftliche Form des Randschichthärtens. In vielen Industrien findet das Induktionshärten seine Anwendung, wie z.B. der Automobilindustrie, dem Werkzeugbau und Landmaschinenbau. Angepasst an Ihre Anforderungen stehen Ihnen in der Härterei mehrere Induktionshärteanlagen zum induktiven Härten für Werkstücke zur Verfügung. Ihre Vorteile durch ein induktives Härten im Lohn bei der HTB Härtetechnik: - Nutzen Sie die gezielte und sogar auf Wunsch partielle Härtung Ihres Bauteils - Profitieren Sie zeitlich von den extrem kurzen Härteprozessen innerhalb von Sekunden oder sogar unter 1 Sekunde - Erwärmung direkt im Werkstück - Geringerer Energieverbrauch als im Vergleich zu anderen Erwärmungsmethoden - Geringere Maß- und Formänderungen als im Vergleich zu anderen Erwärmungsmethoden - Sehr hohe Reproduzierbarkeit des Prozesses durch die bedienerunabhängige Bearbeitung - Sie sparen Geld, weil die Induktionshärteanlagen bedarfsgerecht sofort betriebsbereit sind und Leerlaufkosten somit vermieden werden Jetzt Neu: Richtpressen am Standort Schwerte Am Standort Schwerte steht Ihnen ab sofort eine Richtpresse für 7 m Profile zur Verfügung. Gehärtete Profile können somit direkt vor Ort gerichtet werden. Jetzt anfragen
Das Härten mittels Induktion

Das Härten mittels Induktion

Die Induktionshärtung dient der Steigerung der Verschleißfestigkeit eines geeigneten Werkstoffes. Zur Eignung bedarf es der elektrischen Leitfähigkeit sowie bei Stahl eines Kohlenstoffanteils von mindestens 0.35 %. Das zu härtende Material wird in einer Induktionsspule dem Einfluss eines elektromagnetischen Wechselfeldes ausgesetzt, wodurch in ihm ein elektrischer Wirbelstrom entsteht, welcher seine höchste Konzentration an der Oberfläche hat. Es entsteht Wärme. Übersteigt die Temperatur kohlenstoffhaltigen Eisens 723°C, so wandelt sich dessen Gefüge. Das kubisch-raumzentrische Ferritgitter verändert sich zu einem kubisch-flächenzentrierten Austenitgitter, in dessen verwaister Würfelmitte sich ein Kohlenstoffatom einlagert. Fällt die Temperatur wieder unter 723°C stellt sich der Ursprungszustand wieder her. Bei rascher Abkühlung jedoch findet das Kohlenstoffatom keine Zeit, aus dem Gitter zu entkommen. Es entsteht ein feinnadeliges, sehr hartes und sprödes Gefüge namens Martensit. Beim induktiv härten erwärmt sich das Werkstück nur in der Randschicht auf Härtetemperatur. Die Einhärtetiefe ist abhängig von der Durchlaufgeschwindigkeit des Werkstückes durch die Induktionsspule sowie der Stromfrequenz. Prädestiniert sind vor allem drehsymmetrische Bauteile. Aber auch flache Teile und Kurven lassen sich ohne Probleme mittels Induktion oberflächenhärten. Durch die Herstellung eigener Spulen-, Brausen und Aufnahmevorrichtungen im Haus können wir uns schnell auf neue Teile einrichten.
Induktionshärten

Induktionshärten

Alducto härtet im Hoch-, Mittel- und Spezialfrequenzbereich induktiv. Induktionshärten ist ein Verfahren zur Oberflächenhärtung von Stählen. Das Bauteil befindet sich dabei in einer Spule aus Kupfer, an welche eine Wechselspannung angelegt wird, um das Bauteil auf eine Temperatur oberhalb ihrer Austenitisierungstemperatur zu erwärmen. Der durch die Spule fließende Wechselstrom erzeugt ein magnetisches Wechselfeld, welches das Bauteil bei ausreichender Feldintensität erhitzt. Mögliche Werkstoffe sind unter anderem: Kohlenstoffstähle, Vergütungsstähle, Edelstähle (hochlegierte Stähle), nicht rostende Stähle, Martensitische Stähle, Gusseisen Das Bauteil wird somit mit Hilfe eines magnetischen Wechselfeldes auf Umwandlungstemperatur erhitzt und anschließend abgeschreckt. Der Prozess beruht auf elektromagnetischer Induktion unter Verwendung einer Kupferspule, die von einem Strom mit einer bestimmten Frequenz und einer bestimmten Leistung durchströmt wird. Häufig werden Teile für Antriebsstränge, Triebwerkskomponenten (und Stanzteile) gehärtet. Auf modernsten Anlagen werden unterschiedliche Stähle in Härte, Festigkeit, Zähigkeit und Verschleisswiderstand an die unterschiedlichen Bedingungen angepasst. Die Technologie der partiellen induktiven Wärmebehandlung ermöglicht wirtschaftlich interessante Lösungen. Anwendung Induktionshärten ist ein sehr gezielter Wärmebehandlungsprozess. In ausgewählten Bereichen verbessern wir damit direkt die mechanischen Eigenschaft des Eisenbauteils. In der gehärteten Randschicht erhöhen wir die Festigkeit sowie den Verschleiss- und auch der Ermüdungswiderstand des Werkstoffes. Typischerweise wir das induktive Härten an symmetrischen Bauteilen, wie z.B Zapf- oder Nockenwelle,der Zahnstange oder einem Zahnrad, der Achse, Stanzteil wie auch einer Spindel durchgeführt. Es kann auch nur ein Bereich der Oberfläche spezifisch gehärtet werden. Induktionshärten wird gezielt zur Verbesserung mechanischer Eigenschaften in bestimmten Bereichen eingesetzt. Wichtig ist, das Kerngefüge bleibt unverändert. Dieses Härteverfahren dient der Verbesserung des Verschleisswiderstandes, der Oberflächenhärte und verlängert die Lebensdauer von Komponenten markant. mit beugen wir Reparaturfällen, Gewährleistungsansprüchen und Feldausfällen vor. Das induktive Randhärteverfahren ermöglicht: Höhere Widerstandskraft Höherer Ermüdungswiderstand in Extrembelastung Verbesserte Verschleissfestigkeit in klar definierten Bereichen Verbesserter Verschleisswiderstand durch erhöhte Randschichthärte Verbesserte Torsionsbelastung (sowie wo Stosskräfte einwirken) Verlängerte Lebensdauer von Komponenten Hohe Oberflächenhärte Weicher Kern und sehr harte Aussenschicht Individuell nur Randschichthärten oder partiell Durchhärtung Kerngefüge bleibt unverändert