Finden Sie schnell durchhärter für Ihr Unternehmen: 1261 Ergebnisse

PUR Resin Schnell-Gießharzsystem 15 min | R15GB-flex

PUR Resin Schnell-Gießharzsystem 15 min | R15GB-flex

Das PUR-System R15GB-flex ist eine ungefüllte, niedrigviskose 2-Komponenten Kombination von Harz und Härter mit kurzer Verarbeitungszeit. Eigenschaften und Einsatzgebiete: - Sehr gute Fließeigenschaften - Hohe Füllbarkeit - Mit Farbpasten einfärbbar – Zugabe max. 3% - Erstellung von detailgetreuen, flexiblen Modellen auch mit geringen Wandstärken
Terrassenstuhl Moon stapelbar

Terrassenstuhl Moon stapelbar

Lounge Stuhl Moon stapelbar Gestell: Aluminium pulverbeschichtet mit Armlehnen Sitz/Rücken: Kunststoffgeflecht, flach gewickelt in schwarz Mit Aluminium-Hochglanzfüßen
KFZ-Kennzeichenträger carclix 3 Erhaben

KFZ-Kennzeichenträger carclix 3 Erhaben

Fahrzeug-Nummerschildhalter mit Klappleiste, für deutsche KFZ-Kennzeichen, seitlich offen, erhabenes Motiv auf der Motivleiste unterhalb des Schildes, Made in Germany Artikelnummer: 1095085 Druckfarben: 1 Gewicht: 200 g Maße: 52,4 x 13,2 cm
ZENTRIERBUCHSE GÜTE I, D=35, T=+0,005 BIS +0,018, L=25, WÄLZLAGERSTAHL GEHÄRT...

ZENTRIERBUCHSE GÜTE I, D=35, T=+0,005 BIS +0,018, L=25, WÄLZLAGERSTAHL GEHÄRT...

Werkstoff: Wälzlagerstahl. Ausführung: gehärtet und brüniert. Bestellbeispiel: K0936.113020 Hinweis: Bei einer Achsabstandstoleranz von ±0,005 mm und der Verwendung von 2 Zentrierbuchsen Güte I ist eine Aufspannwiederholgenauigkeit innerhalb von ±0,013 mm möglich. Bei einer Achsabstandstoleranz von ±0,03 mm und der Verwendung von je einer Zentrierbuchse Güte I und Güte II ist eine Aufspannwiederholgenauigkeit innerhalb von ±0,04 mm möglich. Die Zentrierbuchsen werden mit leichtem Druck in die Aufnahmebohrungen der Aufspannplatten eingepresst. Weitere Hinweise siehe allgemeine Information.
Cloucryl Härter

Cloucryl Härter

Cloucryl Härter 20 Ltr. 1909.00000 Artikelnummer: E9100646 Gewicht: 20 kg
Eisen

Eisen

unlegierte Stab-Anode aus reinem Eisen Eigenschaften "Eisen-Elektrode 8 mm" unlegierte Stab-Anode aus reinem Eisen Standardgröße Ø 8 mm x 100 mm oder in der langen Variante 200 mm Materialprobe mit definiertem Reinheitsgrad Fe 99,5 zur vergleichenden Untersuchung von Werkstoffeigenschaften Elementsammlungen Standardelektrode für Experimente in der Elektrochemie (Galvanik, Elektrolyse, Ionenwanderung, Bestimmung elektrochemischer Potentiale etc.) nicht empfohlen zur Herstellung kolloidaler Dispersionen, verwenden Sie hierzu die Elektrode aus hochreinem Eisen Fe 99,9 Reinheitsgrad: 99,5 Durchmesser: 8 mm Länge: 100 mm, 200 mm
MFLS* (Stahl + Stopfen | Gleitplatte)

MFLS* (Stahl + Stopfen | Gleitplatte)

massive Gleitplatte aus gehärtetem Stahl und eingebetteten Schmierstopfen; wartungsfreier Einsatz möglich
Hochlegierter 12 %iger Chromstahl, 1.2436 X 210 Cr W 12, Hochlegierter Stahl

Hochlegierter 12 %iger Chromstahl, 1.2436 X 210 Cr W 12, Hochlegierter Stahl

1.2436 X 210 Cr W 12 ist ein hochlegierter Chromstahl mit höchster Verschleißfestigkeit und Härtbarkeit, der sich durch seine sehr gute Druckfestigkeit auszeichnet. Dieser Stahl ist ideal für Hochleistungsschnitt- und Stanzwerkzeuge sowie Scherenmesser. Mit einer Arbeitshärte von 58 bis 64 HRC bietet er eine hohe Leistung und Zuverlässigkeit in anspruchsvollen Anwendungen.
Wärmbrenner und Glaspolierbrenner für die Glasindustrie

Wärmbrenner und Glaspolierbrenner für die Glasindustrie

IBEDA bietet eine Vielzahl von Wärmbrennern und Glaspolierbrennern für die Glasindustrie an. Diese Brenner arbeiten mit Brenngasen wie Acetylen und Wasserstoff und werden für verschiedene Anwendungen wie Feuerpolitur und Glasumformung eingesetzt. Mit maßgeschneiderten Lösungen und Sicherheitseinrichtungen sind die Brenner ideal für die Glasverarbeitung.
Wärmebehandlung von Bauteilen

Wärmebehandlung von Bauteilen

Auf Wunsch übernehmen wir für unsere Kunden auch die Wärmebehandlung wie Härten, Vergüten und Weichglühen.  In unseren eigenen Öfen bieten wir auch ein Härten unter Formzwang an, wodurch sich der Verzug von flachen Bauteilen extrem verringert.
Einsatzstähle

Einsatzstähle

Einsatzstähle zeichnen sich im Lieferzustand durch eine exzellente Stanz-, Feinschneid- und Kaltumformbarkeit aus. Ausschlaggebend dafür sind die im Rahmen des Kaltwalzprozesses entwickelten Werkstoff- und Mikrogefügestrukturen. Damit bieten Einsatzstähle eine optimale Lösung für die Herstellung von hochpräzisen Bauteilen in unterschiedlichen Industriezweigen. Dank ihrer guten Umformbarkeit lassen sie sich auch bei komplexen Geometrien problemlos verarbeiten. Die hohe Festigkeit und Härte der Einsatzstähle ermöglicht es, dünnwandige Konstruktionen zu realisieren, ohne dabei an Stabilität einzubüßen. Darüber hinaus weisen sie eine gute Oberflächenqualität auf und sind beständig gegen Verschleiß und Korrosion. Einsatzstähle werden beispielsweise in der Automobilindustrie, im Maschinenbau und in der Elektroindustrie eingesetzt. Sie finden Verwendung bei der Herstellung von Karosserieteilen, Federn, Zahnrädern, Schneidwerkzeugen und vielem mehr. Durch ihre vielfältigen Eigenschaften und Anwendungsmöglichkeiten sind Einsatzstähle ein unverzichtbarer Werkstoff in der modernen Fertigungstechnik.
Induktives härten

Induktives härten

Das induktive Härten ist eine äußerst wirtschaftliche Form des Randschichthärtens. In vielen Industrien findet das Induktionshärten seine Anwendung, wie z.B. der Automobilindustrie, dem Werkzeugbau und Landmaschinenbau. Angepasst an Ihre Anforderungen stehen Ihnen in der Härterei mehrere Induktionshärteanlagen zum induktiven Härten für Werkstücke zur Verfügung. Ihre Vorteile durch ein induktives Härten im Lohn bei der HTB Härtetechnik: - Nutzen Sie die gezielte und sogar auf Wunsch partielle Härtung Ihres Bauteils - Profitieren Sie zeitlich von den extrem kurzen Härteprozessen innerhalb von Sekunden oder sogar unter 1 Sekunde - Erwärmung direkt im Werkstück - Geringerer Energieverbrauch als im Vergleich zu anderen Erwärmungsmethoden - Geringere Maß- und Formänderungen als im Vergleich zu anderen Erwärmungsmethoden - Sehr hohe Reproduzierbarkeit des Prozesses durch die bedienerunabhängige Bearbeitung - Sie sparen Geld, weil die Induktionshärteanlagen bedarfsgerecht sofort betriebsbereit sind und Leerlaufkosten somit vermieden werden Jetzt Neu: Richtpressen am Standort Schwerte Am Standort Schwerte steht Ihnen ab sofort eine Richtpresse für 7 m Profile zur Verfügung. Gehärtete Profile können somit direkt vor Ort gerichtet werden. Jetzt anfragen
Härten von Edelstahl

Härten von Edelstahl

Eine bahnbrechende, nachhaltige Technologie Das Oberflächenhärten von Edelstahl ist ein Wärmebehandlungsprozess, den nur sehr wenige Unternehmen beherrschen und keiner so gut wie Expanite. Die patentierte und bewährte Technologie, das wissenschaftliche Know-how und das flexible Liefermodell von Expanite verbessern die Produktleistung und -qualität erheblich und senken die Kosten. Der Expanite-Härtungsprozess entfernt effektiv die Oxidschicht, die die Legierung vor Korrosion schützt. Dies ermöglicht eine kontrollierte Diffusion von Stickstoff und Kohlenstoffatomen in das darunter liegende Metallgitter. Die gehärtete Schicht zeichnet sich durch eine Aufweitung des Werkstoffgefüges aus, die wir auch als expandierten Austenit oder kurz Expanite® bezeichnen.
Entgraten

Entgraten

Entgraten Ihrer Bauteile in Präzision! Entfernen von Graten, Kanten, Auffaserungen oder Splitter an Metall- und Kunststoffteilen. Entgraten Entgraten und Kantenverrunden von Serienteilen aus Metall- und Kunststoff. Entfernen von Graten, scharfen Kanten, Auffaserungen oder Splitter an Metall- und Kunststoffteilen möglich. Bearbeitung von Kleinserien und Schüttgut mit mehr als 100 Mio. Teilen. Unterschiedliche Verfahren (Gleitschleifen, Strahlen, Bürsten). Oberflächenbearbeitung: Deutschland
…UND FRÄSEN, HÄRTEN, SCHLEIFEN UND HARTDREHEN KÖNNEN WIR AUCH

…UND FRÄSEN, HÄRTEN, SCHLEIFEN UND HARTDREHEN KÖNNEN WIR AUCH

Als erfolgreiches Unternehmen für Präzisions-, Dreh- und Frästeile fertigen wir hochqualitative Produkte aus dem Bereich der spanenden Metallverarbeitung. Vom Fräsen, Härten, Schleifen und Drehen bis hin zu einer kompetenten Beratung und Projektbetreuung - wir sind Ihr Ansprechpartner und Experte für die Fertigung und Bearbeitung von Präzisions-, Dreh- und Frästeilen. Auch für komplexe Anforderungen z.B. beim Präzisionsbohren oder der Fertigung anspruchsvoller Frästeile haben wir optimale Lösungen. Ob als Prototyp oder Serienfertigung passen wir uns Ihren Anforderungen an und garantieren für eine äußerst hochwertige Bearbeitung aller zerspanbaren Metalle und verschiedener Kunststoffe sowie für die Produktion von Qualitäts-Präzisionsteilen
Gewindeeinsatz | EN | IG: M2 | AG: 4,5×0,5 | L: 6mm | gehärtet + verzinkt

Gewindeeinsatz | EN | IG: M2 | AG: 4,5×0,5 | L: 6mm | gehärtet + verzinkt

Typ EN | Innengewinde: M2 | Aussengewinde: M4,5 x 0,5 (Steigung wie Feingewinde) | Länge: 6mm | Material: Stahl gehärtet und blau verzinkt | konischer Schneideansatz mit breitem Schneideschlitz | Besondere Hinweise | Mindestbohrlochtiefe bei Sacklöchern: 8mm
BSM-03 UV-Härtungskammer mit integrierten Shutter

BSM-03 UV-Härtungskammer mit integrierten Shutter

HÄRTUNGSKAMMER BSM-03 Mit einer Leistung von 2 kW ist die Härtungskammer BSM-03 für großflächige UV-Härtungen und Klebungen bestens geeignet. Der interne Shutter wird für eine exakte Dosis durch den UV-MAT gesteuert, so dass auch bei Mitteldruckstrahlern eine reproduzierbare Belichtung erreicht wird. Mit einer Bestrahlungsstärke von 150 mW/cm² wird die nötige Dosis typischerweise innerhalb weniger Sekunden erreicht. Die Härtungskammer kann zum Be- und Entladen bei aktiver Lampe geöffnet werden. Der Shutter wird hierzu mit einer Sicherheitsschaltung überwacht und geschlossen, so dass außerhalb der Kammer keine UV-Strahlung emittiert wird. Der verschiebbare Probenträger erleichtert das Be- und Entladen zudem. Mit einer Belastung von bis zu 20 kg hält dieser allen Beanspruchungen stand. Mit 60 x 40 cm Grundfläche und einer Höhe von 25 cm bietet der Bestrahlungsraum außereichend Platz. Die Probenraumtemperatur beträgt im Betrieb ca. 45°C. Durch die hohe Homogenität der Bestrahlung können die Proben beliebig positioniert werden. ANWENDUNGEN DER BESTRAHLUNGSKAMMER UV-Kleben UV-Versiegeln UV-Härten
NEMP E1 & E2 gehärtete HD IP-Farbkamera

NEMP E1 & E2 gehärtete HD IP-Farbkamera

Spezielle Anwendungen Da die Gefahr eines nuklearen Angriffs und auch der Trend zum Einsatz elektromagnetischer Waffen (IEMI = Intentional Electromagnetic Interference) stetig zunehmen, besteht ein Bedarf an CCTV-Systemen, die solche Angriffe überstehen können. Blitzeinschläge in unmittelbarer Nähe verursachen ebenfalls hohe elektromagnetische Impulse (EMP). PONTIS (N) EMP-Kameras bieten eine spezielle Abschirmung und Filterung, um den hohen Feldstärken, insbesondere Magnetfeldern, die bei EMP- und NEMP-Impulsen auftreten, standzuhalten. Zusätzlich zur elektromagnetischen Störfestigkeit können die Kameras auch rauen Umgebungsbedingungen standhalten Bedingungen. Es stehen drei Versionen zur Verfügung: - Verwendung in der Tür (0 ° bis 70 ° C) - Wetterfest: IP 64 (-40 ° C bis +60 ° C) - Erweiterte Version mit versiegeltem Gehäuse für sehr heiße und staubige Umgebungen: IP64 (-30 ° C bis +75 ° C) In den meisten Fällen müssen diese Kameras in vorhandene CCTV- und Überwachungssysteme integriert werden. Die NEMP-Kamera verfügt über eine IP-Schnittstelle, die mit vielen Überwachungssoftwareanwendungen (die auch ONVIF unterstützen) kompatibel ist. Das PONTIS NEMP CCTV-System besteht aus der eigentlichen Kamera in einem wetterfesten Gehäuse und einem separaten, abgeschirmten Netzteil. Die Datenkommunikation (Ethernet) erfolgt über Lichtwellenleiter. Alle Kabel für die Stromversorgung müssen speziell abgeschirmt werden. Im Kameragehäuse und im Netzteil befinden sich eine spezielle mechanische Abschirmung und Hochleistungsfilter. Eigenschaften: - Geschützt gegen Impulse der Klassen E1 und E2 (kurz und mittel) - Optional ferngesteuertes Schwenken / Neigen - Datenkommunikation (Ethernet) über Lichtwellenleiter - IP-Kamera mit ONVIF-Unterstützung Erweiterte Funktionen: - Manuelle Blendensteuerung mit großem Dynamikbereich, Langzeitbelichtung und Bildstabilisator - HD-Video - Wetterschutz IP65 - 24/7-Betrieb
Vakuumhärten

Vakuumhärten

Minimaler Verzug – maximale Reproduzierbarkeit. Das Vakuumhärten eignet sich besonders für stark verzugsempfindliche Präzisionsbauteile, da als Abschreckmedium der moderat wirkende Reinstickstoff verwendet wird. In Vakuumanlagen werden mittel- und hochlegierte Werkzeugstähle, Warm- und Schnellarbeitsstähle sowie martensitische, korrosionsbeständige Stähle bei Temperaturen von bis zu 1300° C gehärtet. Neben der Verzugsarmut zeichnen sich im Vakuum gehärtete Werkstücke durch eine optimale Korrosionsbeständigkeit aus, da Oxydationen im Vakuum nicht stattfinden. Vakuumgehärtete Teile sind daher absolut blank. Durch Veränderung des Abschreckdrucks und der Richtung des Kühlgasstroms kann für jedes Werkstück der optimale Härteprozess exakt eingestellt werden. Über ein elektronisches Prozessleitsystem wird eine 100%ig reproduzierbare Qualität gesichert.
Kanten

Kanten

"Mit Ecken und Kanten" Von der einfachen Kantung bis zur komplexen Bauteilgeometrie. Auf eine maximale Abkantlänge von 3.000mm und einer Presskraft von 170t biegen wir für Sie maßgenau alles in die passende Form. Teile-spektrum Das Teilespektrum reicht vom einfachen Blechteil bis hin zum kompliziert gebogenen 3D Präzisionsteil. große mengen? Kein Problem! Durch die große Wiederholgenauigkeit ist das CNC Abkanten bestens für eine Serienproduktion in der Blechbearbeitung geeignet. Zurück zur Leitungsübersicht STARTEN SIE IHR NÄCHSTES PROJEKT
Vollhartmetallbohrer

Vollhartmetallbohrer

Ein Vollhartmetallbohrer ist ein leistungsstarkes Werkzeug, das speziell für die Bearbeitung extrem harter Materialien entwickelt wurde. Er besteht vollständig aus Hartmetall, einem äußerst widerstandsfähigen Material, das hohe Härte und Verschleißfestigkeit bietet. Dadurch eignet sich der Vollhartmetallbohrer ideal für präzise Bohrungen in hochfesten Werkstoffen wie gehärtetem Stahl, Edelstahl, Gusseisen, Titan und Legierungen. Vollhartmetallbohrer zeichnen sich durch ihre hervorragende Wärmebeständigkeit und hohe Standzeit aus, selbst bei intensiver Nutzung und hohen Drehzahlen. Dank der scharfen Schneidkanten und der speziellen Bohrgeometrie sorgen sie für saubere, gratfreie Bohrungen und eine optimale Spanabfuhr. Sie sind die bevorzugte Wahl in der Luft- und Raumfahrt, im Maschinenbau, in der Automobilindustrie und in der Präzisionsmechanik, wo höchste Ansprüche an Bohrgenauigkeit und Standzeit gestellt werden. Vorteile: Hohe Verschleißfestigkeit und Langlebigkeit Präzise Bohrungen in extrem harten Materialien Hervorragende Wärmebeständigkeit Saubere, gratfreie Bohrergebnisse Geeignet für hohe Drehzahlen und anspruchsvolle Anwendungen Anwendungsgebiete: Luft- und Raumfahrttechnik Maschinenbau Automobilindustrie Werkzeug- und Formenbau Präzisionsmechanik
Rostbeständiger Bandstahl 1.4301

Rostbeständiger Bandstahl 1.4301

Der rostbeständige Bandstahl 1.4301 ist ein vielseitig einsetzbarer Werkstoff, der sich durch seine hervorragende Korrosionsbeständigkeit und hohe Zugfestigkeit auszeichnet. Mit einem Chromanteil von 18% und einem Nickelanteil von 10% bietet dieser Stahl eine ausgezeichnete Balance zwischen Festigkeit und Flexibilität. Er eignet sich besonders für Anwendungen in der Automobil-, Maschinen- und Flugzeugbauindustrie, wo Langlebigkeit und Zuverlässigkeit entscheidend sind. Die Sennhenn GmbH liefert diesen Stahl in verschiedenen Oberflächenqualitäten und Abmessungen, um den spezifischen Anforderungen ihrer Kunden gerecht zu werden. Dank seiner Säurebeständigkeit und Laserbearbeitbarkeit ist der Bandstahl 1.4301 eine hervorragende Wahl für Anwendungen, die Präzision und Langlebigkeit erfordern.
BUNDBOHRBUCHSEN DIN 172 FORM A, GEHÄRTET U. GESCHL.

BUNDBOHRBUCHSEN DIN 172 FORM A, GEHÄRTET U. GESCHL.

Technische Details: Außendurchmesser: 3.00 Innendurchmesser: 0.50 Länge: 6.00 BBA 172 0,50 X 3,00 X 6,00
SURE BAND Steel

SURE BAND Steel

Das SURE BAND Steel ist eine robuste Spritzschutzlösung, die speziell für Hochdruck- und Hochtemperaturanwendungen entwickelt wurde. Hergestellt aus hochwertigem Edelstahl, bietet dieses Produkt eine hervorragende chemische Beständigkeit und ist für Anwendungen bis zu 250 bar und 500°C geeignet. Das SURE BAND Steel ist nicht nur leicht zu montieren, sondern auch wiederverwendbar, was es zu einer kosteneffizienten Wahl für Unternehmen macht, die auf Qualität und Sicherheit setzen. Die PDT-Technologie sorgt dafür, dass der Druck kontrolliert abgebaut wird, wodurch gefährliche Spray-outs verhindert werden. Mit einem Schnellspannverschluss ausgestattet, ermöglicht das SURE BAND Steel eine schnelle und einfache Montage ohne den Einsatz von Werkzeugen. Diese Eigenschaft macht es ideal für Anwendungen, bei denen Zeit und Effizienz von entscheidender Bedeutung sind. Darüber hinaus ist das SURE BAND Steel mit einem Lackmus-Indikator ausgestattet, der bei der Erkennung von gefährlichen Chemikalien hilft. Wählen Sie das SURE BAND Steel für eine zuverlässige und effektive Spritzschutzlösung, die den höchsten Anforderungen gerecht wird.
Härten im Lohn/ Einsatzhärten/ Glühen im Lohn/ Lohnhärterei/ Industriehärten/ Härten von Edelstahl/ Härterei

Härten im Lohn/ Einsatzhärten/ Glühen im Lohn/ Lohnhärterei/ Industriehärten/ Härten von Edelstahl/ Härterei

Wir Härten Ihre Werkstücke/ Zeichnungsteile in unterschiedlichen Verfahren. Dazu gehören: Einsatzhärten Vergüten Härten Glühen Carbonitrieren Gasnitrieren Gasnitrocarburieren Plasmanitrieren Inkutivhärten Wir sind Ihr Partner für: CNC-Drehteile CNC-Frästeile Kettenräder Kettentriebe Verzahnungsteile Zahnräder Blechzuschnitte Brennschneiden Laserzuschnitte Wasserstrahlschneiden Drahterodieren Senkerodieren Montage von Drehteilen/ Frästeilen Baugruppenmontagen Härten Einsatzhärten Vergüten Härten Glühen Carbonitrieren Gasnitrieren Gasnitrocarburieren Plasmanitrieren Inkutivhärten Oberflächenveredelung Veredelung von Drehteilen/ Frästeilen Glavanisches Verzinken Chemisches Verzinken Feuerverzinken Brünieren Phosphatieren Eloxieren Vernickeln Prototypen Konstruktion Entwicklung von Prototypen aus Metallen/ Stahl und Kunststoffen Riemenräder Räumen Verzahnung Schweißen/ Schweißteile Sonderanfertigungen Schweißbaugruppen Drahterodierarbeiten Glühen im Lohn Härten Oberflächenveredelung Oberflächenveredlung, galvanische Räumen im Lohn (Zerspanung) Schweißen im Lohn Senkerodierarbeiten Sonderanfertigungen aus NE-Metallen Verzahnung im Lohn
Flansch Zentrierbolzen Nitriergehärtet Satz im Koffer Ausführung DIN EN M16 und M20

Flansch Zentrierbolzen Nitriergehärtet Satz im Koffer Ausführung DIN EN M16 und M20

Der Flansch Zentrierbolzen Nitriergehärtet Satz im Koffer von KÜMA Maschinen & Anlagenbau GmbH bietet eine robuste Lösung für die Flanschmontage. Diese Bolzen sind nitriergehärtet, was eine erhöhte Oberflächenhärte und Verschleißfestigkeit gewährleistet. Der Satz enthält Bolzen für DIN EN Flansche mit M16 und M20 Schrauben, die in einem praktischen, schmutz- und wasserdichten Koffer (IP65) geliefert werden. Dieser Satz ist ideal für Unternehmen, die eine zuverlässige und langlebige Lösung für die Flanschmontage benötigen. Mit seiner hohen Qualität und Präzision stellt der Satz sicher, dass die Flansche sicher und effizient montiert werden können. KÜMA's Engagement für Qualität und Kundenzufriedenheit macht diesen Satz zu einer ausgezeichneten Wahl für Unternehmen, die auf Zuverlässigkeit und Effizienz Wert legen.
Glühen und ein darauffolgendes Härten

Glühen und ein darauffolgendes Härten

Formhärten von Stählen. Dabei wird das Werkstück zuerst auf eine hohe Temperatur erwärmt und anschließend schnell abgekühlt, um eine martensitische Struktur zu erzeugen. Danach erfolgt eine weitere Wärmebehandlung, bei der das Werkstück auf eine niedrigere Temperatur erhitzt und langsam abgekühlt wird, um die Härte zu optimieren. Diese Methode des Doppelhärtens wird häufig bei Werkzeugstählen angewendet, um eine hohe Verschleißfestigkeit und Zähigkeit zu erreichen.
Warum Verfestigungsstrahlen

Warum Verfestigungsstrahlen

steigert die Schwingfestigkeit im Zeit- und Dauerfestigkeitsbereich steigert die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion verhindert die Entstehung und Fortpflanzung von Rissen Das Verfahren ist bei allen metallischen Werkstoffen anwendbar! Eine höhere Schwingfestigkeit steigert entweder die zulässige Belastung eines Bauteiles oder die Sicherheit eines vorhandenen Bauteiles wird erhöht. Das Bauteil wird entweder dauerschwingfest oder die Zeitfestigkeit wird erhöht. Beispiele: Höhere Leistung bei gleichem Gewicht oder geringeres Gewicht bei gleicher Leistung Höhere Leistung bei gleicher Abmessung oder kleinere Abmessung bei gleicher Leistung Höhere Leistung bei gleichem Werkstoff oder größere Werkstoffauswahl bei gleicher Leistung Höhere Leistung bei gleicher Oberflächenqualität oder niedrigere Anforderung an die Oberflächenqualität bei gleicher Leistung Die elastische Verformung induziert in der plastifizierten Zone hohe Druckeigenspannungen. Das Bauteil wird durch die induzierte Druckeigenspannung an bzw. unter der Oberfläche von externen Zugspannungen entlastet und die Dauerschwingfestigkeit und die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion wird gesteigert. Gleichzeitig wird die Entstehung und Fortpflanzung von Rissen verhindert. Die Steigerung der Schwingfestigkeit ist bei Bauteilen mit hohen Kerb- und Formfaktoren, bei hohen Torsions- oder Biegespannungen, bei Stoßbelastungen, hochfesten und gehärteten Bauteilen relativ zur Ausgangsfestigkeit am größten. Strahlen lässt sich darüber hinaus zum Verdichten, Reinigen, Strippen, Strukturieren, Aufrauen, Mattieren, Glätten, Entgraten, Abtragen, Trennen, Gravieren und zum Umformen von dünnwandigen Bauteilen im elastischen Bereich einsetzen. Wirkung des Verfestigungsstrahlens Beim Verfestigungsstrahlen werden durch gezielten Beschuss mit durch Pressluft oder Fliehkraft beschleunigten, kugelförmigen Partikeln, die wie winzige Schmiedehämmer wirken, begrenzte plastische und elastische Verformungen in der Bauteilrandschicht erzeugt. Bei der Herz`schen Pressung werden die plastischen und elastischen Verformungen unter der Oberfläche erzeugt. Beide Wirkungen treten stets nebeneinander auf und werden durch die Strahlkenngrößen beeinflusst.
Warum Verfestigungsstrahlen

Warum Verfestigungsstrahlen

steigert die Schwingfestigkeit im Zeit- und Dauerfestigkeitsbereich steigert die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion verhindert die Entstehung und Fortpflanzung von Rissen Das Verfahren ist bei allen metallischen Werkstoffen anwendbar! Eine höhere Schwingfestigkeit steigert entweder die zulässige Belastung eines Bauteiles oder die Sicherheit eines vorhandenen Bauteiles wird erhöht. Das Bauteil wird entweder dauerschwingfest oder die Zeitfestigkeit wird erhöht. Beispiele: Höhere Leistung bei gleichem Gewicht oder geringeres Gewicht bei gleicher Leistung Höhere Leistung bei gleicher Abmessung oder kleinere Abmessung bei gleicher Leistung Höhere Leistung bei gleichem Werkstoff oder größere Werkstoffauswahl bei gleicher Leistung Höhere Leistung bei gleicher Oberflächenqualität oder niedrigere Anforderung an die Oberflächenqualität bei gleicher Leistung Die elastische Verformung induziert in der plastifizierten Zone hohe Druckeigenspannungen. Das Bauteil wird durch die induzierte Druckeigenspannung an bzw. unter der Oberfläche von externen Zugspannungen entlastet und die Dauerschwingfestigkeit und die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion wird gesteigert. Gleichzeitig wird die Entstehung und Fortpflanzung von Rissen verhindert. Die Steigerung der Schwingfestigkeit ist bei Bauteilen mit hohen Kerb- und Formfaktoren, bei hohen Torsions- oder Biegespannungen, bei Stoßbelastungen, hochfesten und gehärteten Bauteilen relativ zur Ausgangsfestigkeit am größten. Strahlen lässt sich darüber hinaus zum Verdichten, Reinigen, Strippen, Strukturieren, Aufrauen, Mattieren, Glätten, Entgraten, Abtragen, Trennen, Gravieren und zum Umformen von dünnwandigen Bauteilen im elastischen Bereich einsetzen. Wirkung des Verfestigungsstrahlens Beim Verfestigungsstrahlen werden durch gezielten Beschuss mit durch Pressluft oder Fliehkraft beschleunigten, kugelförmigen Partikeln, die wie winzige Schmiedehämmer wirken, begrenzte plastische und elastische Verformungen in der Bauteilrandschicht erzeugt. Bei der Herz`schen Pressung werden die plastischen und elastischen Verformungen unter der Oberfläche erzeugt. Beide Wirkungen treten stets nebeneinander auf und werden durch die Strahlkenngrößen beeinflusst.
Warum Verfestigungsstrahlen

Warum Verfestigungsstrahlen

steigert die Schwingfestigkeit im Zeit- und Dauerfestigkeitsbereich steigert die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion verhindert die Entstehung und Fortpflanzung von Rissen Das Verfahren ist bei allen metallischen Werkstoffen anwendbar! Eine höhere Schwingfestigkeit steigert entweder die zulässige Belastung eines Bauteiles oder die Sicherheit eines vorhandenen Bauteiles wird erhöht. Das Bauteil wird entweder dauerschwingfest oder die Zeitfestigkeit wird erhöht. Beispiele: Höhere Leistung bei gleichem Gewicht oder geringeres Gewicht bei gleicher Leistung Höhere Leistung bei gleicher Abmessung oder kleinere Abmessung bei gleicher Leistung Höhere Leistung bei gleichem Werkstoff oder größere Werkstoffauswahl bei gleicher Leistung Höhere Leistung bei gleicher Oberflächenqualität oder niedrigere Anforderung an die Oberflächenqualität bei gleicher Leistung Die elastische Verformung induziert in der plastifizierten Zone hohe Druckeigenspannungen. Das Bauteil wird durch die induzierte Druckeigenspannung an bzw. unter der Oberfläche von externen Zugspannungen entlastet und die Dauerschwingfestigkeit und die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion wird gesteigert. Gleichzeitig wird die Entstehung und Fortpflanzung von Rissen verhindert. Die Steigerung der Schwingfestigkeit ist bei Bauteilen mit hohen Kerb- und Formfaktoren, bei hohen Torsions- oder Biegespannungen, bei Stoßbelastungen, hochfesten und gehärteten Bauteilen relativ zur Ausgangsfestigkeit am größten. Strahlen lässt sich darüber hinaus zum Verdichten, Reinigen, Strippen, Strukturieren, Aufrauen, Mattieren, Glätten, Entgraten, Abtragen, Trennen, Gravieren und zum Umformen von dünnwandigen Bauteilen im elastischen Bereich einsetzen. Wirkung des Verfestigungsstrahlens Beim Verfestigungsstrahlen werden durch gezielten Beschuss mit durch Pressluft oder Fliehkraft beschleunigten, kugelförmigen Partikeln, die wie winzige Schmiedehämmer wirken, begrenzte plastische und elastische Verformungen in der Bauteilrandschicht erzeugt. Bei der Herz`schen Pressung werden die plastischen und elastischen Verformungen unter der Oberfläche erzeugt. Beide Wirkungen treten stets nebeneinander auf und werden durch die Strahlkenngrößen beeinflusst.