Finden Sie schnell ultraschall reinigungsgerät industrie für Ihr Unternehmen: 4 Ergebnisse

Ultraschall-Reinigung

Ultraschall-Reinigung

Ultraschall-Reinigung: Eine effektive Methode zur Reinigung verschiedener Gegenstände Die Ultraschall-Reinigung ist eine moderne und effiziente Methode, um verschiedene Gegenstände gründlich zu reinigen. Dabei werden Schmutz, Fett, Öl und andere Verunreinigungen mithilfe von Ultraschallwellen entfernt. Diese Technik eignet sich besonders gut für die Reinigung von schwer zugänglichen Stellen und empfindlichen Materialien. Im Folgenden erfahren Sie mehr über die Vorteile der Ultraschall-Reinigung und wie sie funktioniert. Vorteile der Ultraschall-Reinigung gegenüber herkömmlichen Reinigungsmethoden Die Ultraschall-Reinigung bietet im Vergleich zu herkömmlichen Reinigungsmethoden einige Vorteile. Einer der größten Vorteile ist die Schnelligkeit der Reinigungsprozesse. In vielen Fällen kann die Ultraschall-Reinigung innerhalb weniger Minuten abgeschlossen sein, während manuelle Reinigungsverfahren oft mehr Zeit in Anspruch nehmen. Zudem ist die Ultraschall-Reinigung schonend für das Material, da keine aggressiven Chemikalien oder Bürsten zum Einsatz kommen. Dadurch werden Kratzer und Beschädigungen vermieden. Anwendungsbereiche der Ultraschall-Reinigung Die Anwendungsbereiche der Ultraschall-Reinigung sind vielfältig und reichen von der Industrie über den medizinischen Bereich bis hin zum Privathaushalt. In der Industrie wird die Ultraschall-Reinigung beispielsweise zur Reinigung von Maschinenteilen, Werkzeugen oder elektronischen Bauteilen eingesetzt. Im medizinischen Bereich kommt sie unter anderem bei der Sterilisation von chirurgischen Instrumenten zum Einsatz. Aber auch im Privathaushalt kann die Ultraschall-Reinigung genutzt werden, um beispielsweise Schmuck, Brillen oder Zahnprothesen zu reinigen. So funktioniert die Ultraschall-Reinigung Die Ultraschall-Reinigung basiert auf dem Prinzip der Kavitation. Dabei werden durch den Einsatz von Ultraschallwellen für einer Flüssigkeit kleine Bläschen erzeugt, die implodieren und dabei eine große Menge an Energie freisetzen. Diese Energie sorgt dafür, dass Schmutzpartikel und Verunreinigungen von der Oberfläche des zu reinigenden Gegenstandes gelöst werden. Die Ultraschallwellen werden mithilfe eines sogenannten Ultraschallgenerators erzeugt, der für einem Reinigungsgerät integriert ist. Tipps zur Auswahl des richtigen Ultraschallreinigungsgeräts Bei der Auswahl eines geeigneten Ultraschallreinigungsgeräts sollten Sie einige Faktoren berücksichtigen. Dazu gehört beispielsweise die Größe des Reinigungsbehälters, der auf das Volumen und die Abmessungen der zu reinigenden Gegenstände abgestimmt sein sollte. Zudem spielt die Frequenz der Ultraschallwellen eine Rolle, da diese je nach Anwendungsbereich und Material variieren kann. Ein weiterer wichtiger Aspekt ist die Qualität und Verarbeitung des Geräts, um eine lange Lebensdauer und effektive Reinigungsergebnisse zu gewährleisten.
Ultraschallmessung

Ultraschallmessung

Für eine optimale Prüfung von Material- und Bindungseigenschaften. Die Ultraschallmessung erlaubt die zerstörungsfreie Überprüfung von Material- und Bindungseigenschaften im Walzenbezug und trägt damit zur Betriebssicherheit Ihrer Maschine bei. Unsere speziell geschulten Anwendungstechniker verfügen über umfangreiche technische Kompetenz und Erfahrung zur Durchführung der Ultraschallprüfung und zur fallspezifischen Interpretation der Messergebnisse. Damit können risikobezogen Fehlstellen und Bezugsablösungen aufgespürt werden, bevor sie Schäden in der Maschine verursachen. Anwendungsmöglichkeiten: • Nachweis von Unregelmäßigkeiten im Walzenbezug (z.B. Hohlräume, Poren, Verunreinigungen, Risse) • Erkennen von Bindungsunregelmäßigkeiten und Bezugsablösungen • Wandstärkenmessungen des Walzenkerns/-mantels • Messung von Restschichtstärken (z.B. Kalanderwalzen) Leistungsumfang: • Identifikation und Ortung von Material-/Bindungsunregelmäßigkeiten • Bewertung und Interpretation der Prüfergebnisse durch erfahrene Spezialisten • Ursachenanalyse und Erarbeitung von Maßnahmenplänen • Dokumentation der Prüfergebnisse, Erstellung von detaillierten Berichten Besonderheiten: • Automatisierte Ultraschallprüfung der gesamten Walzenoberfläche vor/nach dem Schleifen • Vor-Ort-Rasterprüfung an allen zugänglichen Walzen während eines Shut-Downs
Plasmareinigung / Tiefenreinigung = Plasmabehandlung

Plasmareinigung / Tiefenreinigung = Plasmabehandlung

LABS ist ein Akronym für Lackbenetzungsstörende Substanzen. Diese Substanzen verhindern eine gleichmäßige Benetzung der zu lackierenden Oberfläche und verursachen so trichterförmige Störstellen und Kraterbildungen in der Lackschicht. Seit Einführung der Lackierung mit lösemittelfreien Lacken (richtig: Lösemittelarm) in der Automobilindustrie wird für Produktionsmaterial, Anlagen und Werkzeuge Labsfreiheit gefordert. Da nicht bekannt ist, welche Substanzen zu diesen Störungen führen, werden Materialien, Bauteile und Baugruppen auf Labsfreiheit geprüft. Während bei Metallen und vielen Kunststoffen durch intensive Reinigung die oberflächlich haftenden Fertigungshilfsmittel (Trenn,- Kühlmittel u.s.w) sicher entfernt werden, genügt bei Elastomeren eine Oberflächenreinigung nicht. Je nach Compound sind nicht nur verbleibende oberflächliche Fertigungshilfsmittel zu entfernen. In das Material diffundierte Spuren der Fertigungshilfsmittel und auch einige nicht gebundene Mischungsbestandteile müssen entfernt werden. OVE hat einen Prozess entwickelt, welcher Elastomere weitestgehend LABS-frei reinigt. Bei Compounds mit hohen Anteilen an LABS-Substanzen in der Mischung kann es aber je nach Lager und Einsatzbedingungen zur erneuten Kontamination kommen. Der OVE-Reinigungsprozess erzielt beste Ergebnisse. Nach einer intensiven Nassreinigung mit Fettlöser werden die Teile im Niederdruckplasma mit einer Sauerstoff-Spülung tiefengereinigt. Prinzip Plasma Plasma ist ein gasförmiges Gemisch aus Atomen, Molekülen, Ionen und freien Elektronen. Ein Niederdruckplasma entsteht, wenn sich ein Gas bei niedrigem Druck (0,1 - 100 Pa) in einem elektrischen Feld (z. B. 50 kHz Wechselfeld, 1000 V) befindet (siehe Abbildung 1). Die in jedem Gas vorhandenen wenigen freien Elektronen und negativ geladenen Ionen werden zur Kathode hin beschleunigt. Alle positiv geladenen Ionen werden zur Anode hin beschleunigt. Die Teilchen besitzen aufgrund des niedrigen Drucks eine lange freie Weglänge und werden auf einige 100 eV beschleunigt. Stoßen diese hochenergetischen Teilchen mit den Molekülen des Gases zusammen, spalten sie sie ebenfalls in Ionen, freie Elektronen und freie Radikale auf. Auf diese Weise entsteht ein Plasma mit einem hohen Anteil an reaktiven Teilchen. Das OVE - Verfahren Die zu behandelnden Elastomer- oder Kunststoffteile werden in Körben in die Prozesskammern eingebracht. Diese wird evakuiert. Anschließend wird etwas Prozessgas eingelassen. Bei einem Innendruck von 10 bis 500 Pa (Feinvakuum) wird durch ein hochfrequentes Wechselfeld das Prozessgas ionisiert. Als Prozessgas kommt Sauerstoff zum Einsatz. Durch den Unterdruck haben die ionisierten Gasteilchen eine ausreichend lange mittlere freie Wegstrecke bis zu einer Kollision mit anderen Gasteilchen. Die Wahrscheinlichkeit einer Kollision mit der zu behandelnden Elastomeroberfläche ist dadurch hinreichend hoch. Auf der Elastomeroberfläche finden hauptsächlich Oxidations- und Crackprozesse statt. An der Oberfläche bilden sich dadurch polare Gruppen in Form von Carbonyl-, Carboxy- und Hydroxidgruppen. Dieser Effekt bewirkt unter anderem auch eine meßbare Erhöhung der freien Oberflächenenergie. Die Einwirktiefe beträgt nur wenige Moleküllagen. Abbildung 2 zeigt den prinzipiellen Aufbau einer Plasmaanlage mit Gasversorgung, Plasmaprozessor und Vakuumpumpe. Die reaktiven Teilchen lösen die Verschmutzung von den zu reinigenden Teilen ab, indem sie entweder chemisch mit den Molekülen der Verschmutzung reagieren oder diese durch Abgabe ihrer hohen kinetischen Energie beim Aufprall "absprengen". Bei der Entfernung durch chemische Reaktionen werden die Verunreinigungen in Wasserdampf, Kohlendioxid und niedrigmolekulare flüchtige organische Teilchen aufgespalten (siehe Abbildung 3). Die gereinigten Oberflächen sind LABS-frei. Der Nachweis der LABS-Freiheit erfolgt durch die VW Prüfspezifikation 3.10.7 Prüfung nach VW-Prüfvorschrift. Die VW PV 3.10.7 ist als Standard weit verbreitet. Die zu prüfenden Bauteile werden mit einem Lösemittelgemisch benetzt, das Lösemittel auf einer Testplatte verdunstet, danach wird die Testplatte lackiert. Die Lackfläche darf keine Krater aufweisen. Beschreibung Im Niederdruck-Plasmaverfahren wird Sauerstoff im Vakuum durch Energiezufuhr angeregt. Es bilden sich Sauerstoffradikale (O) und Ozon (O2). Reaktive Rückstände (Öle, Fette,…) werden oxidiert und als Gas (CO, CO2 , H2O oder Stäube) entfernt. Ziel Labsfreiheit, Oberflächenaktivierung Anwendung Alle Elastomerarten Farbe Keine Änderung Schichtdicke Kein Schichtauftrag Temperaturbereich Keine Änderung Härte Keine Härteänderung Eigenschaften - Computergesteuertes Verfahren - Fertigteil entspricht der VW-Prüfspezifikation 3.10.7 - keine Veränderung der physikalischen Eigenschaften des behandelten Elastomers - „labsfrei“ für alle Produkte lieferbar Lieferzeit 2 – 3 Wochen Preis Auf Anfrage
BSL-02 UV-LED-Kammer Bestrahlungskammer für UV-Härten, UV-Kleben, Versiegeln, Vergießen

BSL-02 UV-LED-Kammer Bestrahlungskammer für UV-Härten, UV-Kleben, Versiegeln, Vergießen

Mit der UV-LED-Kammer BSL-02 bieten wir eine vielseitige Bestrahlungskammer auf Basis von Hochleistungs-UV-LEDs an. Durch die hohe Bestrahlungsstärke von bis zu 400 mW/cm² können die gängigsten UV-härtenden Kleber appliziert werden. Im Vergleich zu unseren Bestrahlungskammern der BS-Serie bietet die BSL-02 die 40-fache Bestrahlungsstärke. Die hohe Bestrahlungsstärke ermöglicht extrem kurze Belichtungszeiten bei einer exzellenten Wiederhohlgenauigkeit. Durch die für UV-LEDs typischen Eigenschaften wie der Sofort-Start, die Dimmbarkeit und die hohe Lebensdauer ist die BSL-02 ideal für Laboruntersuchungen und die händische Fertigung geeignet. Der integrierte Timer steuert die Bestrahlung bereits exakt. Für noch bessere Ergebnisse empfehlen wir einen unserer kalibrierten UVA+-Sensor. Die Dosiskontrolle ist bei der UV-LED-Kammer BSL-02 bereits in den Steuerungseinheiten UV-MAT Touch und UV-MAT integriert. Mit einem optionalen Sensor misst der UV-MAT die Bestrahlungsstärke kontinuierlich und beendet bei der eingestellten Zieldosis die Bestrahlung. Für Ihre Anwendung stehen die Wellenlängen 365 nm, 385 nm, 395 nm, 405 nm und 450 nm zur Verfügung. Optional können zwei Wellenlängen getrennt gesteuert werden. Die BSL-02 bieten wir in zwei Versionen an: 0 bis 400 mW/cm² (Version HO) 0 bis 200 mW/cm² (Version ECO) Durch den geringen Wärmeeintrag der UV-LEDs und die Probenraumtemperatur von ca. 40 °C, wird eine thermische Schädigung der Proben minimiert. Durch die hohe Homogenität der Bestrahlung können die Proben beliebig positioniert werden. Die BSL-02 verfügt über kompakte Außenmaße, bietet aber einen Bestrahlungsraum mit einer Grundfläche von 46 x 32 cm und einer Höhe von 25 cm. In der vollständig geschlossen und überwachten Bestrahlungskammer ist das Bedienpersonal beim Handling vor UV-Strahlung vollständig geschützt. ANWENDUNGEN DER BESTRAHLUNGSKAMMER UV-Härten und UV-Kleben Versiegeln und Vergießen Laboruntersuchungen Händische Klebungen TECHNISCHE DATEN UV-LED-KAMMER BSL-02 Innenmaße 46 x 32 x 25 cm Abmessungen, Kammer 55,5 x 40 x 43 cm Gewicht ~ 40 kg Leistungsaufnahme 600-1200 W Wellenlänge 365, 385, 395, 405, 450 nm Peakwellenlänge +/- 5 nm Emission, FWHM 10 - 20 nm max. Bestrahlungsstärke 400 mW/cm² (450 nm) max. Bestrahlungsstärke 300 mW/cm² (385 - 405 nm) max. Bestrahlungsstärke 200 mW/cm² (365 nm) Netzanschluss 100 - 240 V, 50/60 Hz Kühlung Luftkühlung Timer 0,01 s bis 9999 h Auslösung 0,01 s Dosissteuerung mit opt. Sensor