Finden Sie schnell speztrometrie für Ihr Unternehmen: 276 Ergebnisse

ICP-MS (Massenspektrometrie mit induktiv gekoppeltem Plasma)

ICP-MS (Massenspektrometrie mit induktiv gekoppeltem Plasma)

ICP-MS ist eine Revolution in der anorganischen Spurenanalytik. Nahezu alle Metalle und Halbmetalle können damit gleichzeitig sowohl qualitativ als auch quantitativ bestimmt werden. Während andere Elementaranalysetechniken bei der Multielementbestimmung im unteren Spurenbereich an ihre Grenzen stoßen, zeichnet sich die ICP-MS vor allem durch niedrige Nachweisgrenzen, einen großen linearen Messbereich und schnellen Probendurchsatz aus. Dies macht die ICP-MS zu einem unschlagbaren Instrument in der Multielementbestimmung.
COMPUTERTOMOGRAFIE

COMPUTERTOMOGRAFIE

Die Industrielle Computertomografie ermöglicht uns die Vermessung komplexer Bauteile sowie vielfälltige zerstörungsfreie Analysen. Unser Werth TomoScope HV Compact 300kV steht für technologisch führende Computertomografie. Es ist eines der leistungsfähigsten und präzisesten CT-Geräte. Es ermöglicht uns hochgenaue Erstmustervermessungen oder schnelle zerstörungsfreie Prüfungen für Sie durchzuführen. Messvolumen: bis Ø 470 x 670 mm Mit der Industriellen Computertomografie werden, ähnlich der humanen Computertomografie, Bauteile mit einem Hochleistungs-Röntgenstrahl "durchleuchtet" und erfahren eine 3D Vermessung. Dabei wird ohne mechanische Einwirkungen und zerstörungsfrei eine hohe Anzahl von Schnittbildern des Prüflings erstellt. Diese werden zu 3D-Volumendaten umgewandelt. Aus den gewonnenen 3D-Volumendaten lassen sich verschiedene messtechnische Auswertungen und Analysen durchführen. Zudem kann die so erzeugte Messpunktwolke, wie bei dem 3D-Scannen, für das Reverse Engineering mittels Flächenrückführung verwendet werden.
Untersuchungen mittels ICP-OES-Spektrometrie

Untersuchungen mittels ICP-OES-Spektrometrie

Die Vorteile der ICP-OES liegen darin, dass es durch die Aufnahme eines Vollspektrums der Probenemissionen auf 12 parallele CCD´s möglich ist, die Messung simultan durchzuführen. Die Materialanalyse von Metallen führen wir mittels Atomemissionsspektroskopie (ICP-OES) nach nasschemischem Säureaufschluss sowie mittels Verbrennungsanalyse mit Infrarotdetektion (IR) für die Kohlenstoff- und Schwefelanalyse durch. Die ICP-OES stellt eine Multielementanalyse dar, bei der die gelöste Probe in einem Hochfrequenzmagnetfeld durch ein Plasma (ICP) auf mehrere Tausend Grad Celsius erhitzt wird und die einzelnen Elementatome zum Emittieren von Licht verschiedener Wellenlängen angeregt wer-den. Dabei ist die Wellenlänge, bei der emittiert wird, charakteristisch für das vorliegende chemische Element und die Höhe der Lichtemission ein Maß für die Konzentration eines bestimmten Metalls. Dadurch können wir alle für diese Messtechnik verfügbaren chemischen Elemente messen (sofern mit Standards kalibriert wurde). Zudem ist es darüber hinaus möglich, zusätzlich wichtige Elemente einer längst analysierten Probe auch nachträglich qualitativ auszuwerten. Von der Messqualität und Robustheit der neuen ICP-OES haben wir uns durch viele Kontrollanalysen mit zertifizierten Referenzmaterialien bei den verschiedenen Messgeräteherstellern überzeugt und das „SPECTROBLUE" der Fa. Spectro ausgesucht. Profitieren auch Sie von unserer vielfältigen Erfahrung auf dem Gebiet der Werkstoffanalyse von Metallen wie Stählen (legierter Stahl, Edelstahl), Gusseisen, Aluminiumwerkstoffen (Knetlegierungen und Aluguss), Kupferlegierungen (Messing und Bronze), Zinkdruckguss, Magnesiumwerkstoffen und Titanwerkstoffen (Reintitan und Legierungen).
Optische Emissionsspektrometrie (OES)

Optische Emissionsspektrometrie (OES)

Mit der optischen Emissionsspektrometrie (OES) analysiert SPC Werkstofflabor GmbH präzise die chemische Zusammensetzung Ihrer metallischen Werkstoffe. Die Ergebnisse werden mit Normvorgaben oder Grenzwerten Ihrer eigenen Kundenvorschriften verglichen. Unsere hochmodernen SpectroLab-Geräte ermöglichen Nachweisgrenzen bis in den ppm-Bereich, um Ihnen präzise und zuverlässige Ergebnisse zu liefern. Wir analysieren Guss, Eisen, Aluminium, Nickel und deren Legierungen sowie weitere Werkstoffe, um Ihnen den bestmöglichen Service zu bieten.
Goniometer

Goniometer

Bei dem Laser Light Scattering Spectrometer/Goniometer handelt es sich um ein Lasermessgerät zur Ermittlung von Molekülgrößen und - formen. Goniometer Bei dem Laser Light Scattering Spectrometer/Goniometer handelt es sich um ein Lasermessgerät zur Ermittlung von Molekülgrößen und - formen. Bei diesem Gerät stammen die mechanischen Bauteile ausschließlich von Sallwey CNC-Technik.
Prüfzelle

Prüfzelle

Optische Deformationsprüfzelle Mit der „Control Unit 1“ bieten wir erstmals eine schlüsselfertige Prüfzelle an. Diese beinhaltet bis zu 2 Messköpfe sowohl in horizontaler als auch in vertikaler Ausrichtung. Neben der ergonomischen Bedieneinheit befindet sich aufgeräumt im unteren Bereich des Maschinengehäuses die notwendige Elektronik für den störungsfreien Betrieb des Gesamtsystems. Neben dem Standalone Betrieb ist die Herstellung einer Profinetkommunikation mit anderen Systemen optional möglich. Spezielle Eigenschaften und Merkmale: Das System ist vorkalibriert und wird zusammen mit einem Kalibrierzertifikat ausgeliefert. - Zuverlässige Messungen bis 30m/min Bandgeschwindigkeit. - Unempfindlich gegen Umgebungslicht. - Kurze Belichtungszeit: 0,1 ms - Messgenauigkeit: ±1,2 μm und besser (je nach Messkopf) - Wiederholgenauigkeit: ±0,1 μm - Großer Tiefenschärfemessbereich: 20mm Konturcheck für die intuitive Überprüfung komplexer Formen. Zusätzlich zu den traditionellen Dimensionsmessungen wie Abstand und Parallelität, vergleicht das Kontur-Vergleichswerkzeug die Fläche des Messobjekts an verschiedenen Stellen mit einem Referenzbild, um Defekte zu identifizieren. Dieses Werkzeug ermöglicht die einfache Überprüfung komplexer Formen, die sonst schwer zu analysieren sind, wie z.B. bei komplizierten Stanzgeometrien.
Lichtmikroskopie

Lichtmikroskopie

Mikroskopische Untersuchungen für die Industrie. Qualitätssicherung, Schadenanlyse F&E. Akkreditiertes Labor, Metallographie Mit der Lichtmikroskopie werden überwiegend Aufnahmen von metallographischen Schliffen erstellt. Für die Bewertung der Mikrostrukturen stehen uns diverse optische Kontrastierungen zur Verfügung. Neben der gängigen Hellfeld und Dunkelfeldbeleuchtung können Proben auch unter polarisiertem Licht und im Interferenzkontrast nach Nomarski betrachtet werden. Diese Beleuchtungsmöglichkeiten werden verwendet um die Gefüge von z.B. Stählen, NE-Legierungen sowie CFK auszuwerten. Mittels einem automatischen Scantisch und der damit vebundenen automatischen Bildaufnahmen können Aufnahmen von Schliffgrößen bis 100 x 100 mm erstellt werden. Dies erleichtert die Phasenbestimmung und Porenauswertung über den gesamten Schliffquerschnitt.
Labor für ToF-SIMS - Flugzeit-Sekundärionen-Massenspektrometrie

Labor für ToF-SIMS - Flugzeit-Sekundärionen-Massenspektrometrie

Die Sekundärionenmassenspektrometrie (TOF-SIMS) ermöglichst die Messung der atomaren und molekulare Zusammensetzung der obersten 1-3 Monolagen einer Probe. Insbesondere erlaubt sie eine eindeutige Ide Kurzprofil der ToF-SIMS: Nachweis aller Elemente (inkl. Isotope), molekulare Informationen Nachweisgrenze im Bereich von Sub-Monolagen (ppm) Informationstiefe ca. 1-3 Monolagen Laterale Auflösung bis zu 0,3 µm Arbeitet auch Abbildend Quantifizierung ist eingeschränkt möglich (mit Standards) Exemplarische Anwendungsmöglichkeiten: Identifizierung organischer und anorganischer Verbindungen auf Oberflächen Spezifische Informationen von dünnen Schichten bis zu Sub-Monolagen Identifizierung von Kontaminationen Analyse leitender und nichtleitender Oberflächen Erstellung von Tiefenprofilen Abbildung von Lateralverteilungen
Gravimetrie

Gravimetrie

Die extrahierten Partikel eines Prüfobjekts werden durch den Massenzuwachs eines Analysefilters bestimmt (Auswaage – Einwaage = Massenzuwachs) Hierzu wird das Filter vor und nach der Filtration mittels einer Feinwaage gewogen. Unsere Waage erlaubt es mit einer Auflösung von 0,01 mg zu wiegen. Die Gravimetrie liefert die Masse in Milligramm der Partikelfracht, lässt aber keine Aussage über die Größenverteilung der Partikel zu.
Analyse

Analyse

Fein-Elast ist bestrebt, seinen Kunden in jeder Hinsicht hilfreich zur Seite zu stehen. Wenn Sie eine besondere Neuentwicklung wünschen, steht Ihnen unsere Forschungs- und Entwicklungsabteilung gerne tatkräftig zur Seite. Wir analysieren gemeinsam Ihre Bedürfnisse auf Umsetzbarkeit. Wenn eine Lösung gefunden ist, sorgen wir für eine effiziente Umsetzung, die Ihre speziellen Anforderungen berücksichtigt. Unser Qualitätsanspruch garantiert Ihre Zufriedenheit mit unseren Lösungen.
Mess- und Prüftechnik

Mess- und Prüftechnik

Unser optimal eingerichtetes Prüflabor ist die Grundvoraussetzung für das saubere Kontrollieren und dem daraus resultierenden korrekten Prüfergebnis.
Vermessung und Dokumentation

Vermessung und Dokumentation

Wir vermessen unsere Prototypen und Serienartikel direkt bei uns im Haus. Definierte Anforderungen werden während der Produktion regelmäßig überprüft. In unserer Qualitätssicherung werden wir von einem 3D-Messmikroskop unterstützt. Auf Wunsch erstellen wir damit für unsere Kunden ausführliche Erstmusterprüfberichte.
Röntgenfluoreszenzanalysen

Röntgenfluoreszenzanalysen

Die Röntgenfluoreszenzanalyse (RFA) ist eine leistungsfähige Technik zur Elementanalyse von Proben. Bei dieser Methode werden Röntgenstrahlen auf eine Probe gerichtet, was zur Anregung der Atome in der Probe führt. Die angeregten Atome emittieren dann charakteristische Röntgenstrahlen, deren Energie und Intensität gemessen werden können. Basierend auf diesen Messungen können die Elementzusammensetzung und -konzentration der Probe bestimmt werden. Unsere Röntgenfluoreszenzanalysen bieten eine schnelle, zerstörungsfreie und präzise Analyse von verschiedenen Materialien, einschließlich Metallen, Mineralien, Gesteinen, Bodenproben, Kunstobjekten, Elektronikkomponenten und vielem mehr. Unsere hochqualifizierten Experten nutzen modernste RFA-Geräte und -Techniken, um genaue und zuverlässige Ergebnisse zu liefern. Die Vorteile unserer Röntgenfluoreszenzanalysen umfassen: Schnelligkeit: Die RFA ermöglicht schnelle Analysen vor Ort oder im Labor, was eine effiziente Probenahme und Analyse ermöglicht. Vielseitigkeit: Die RFA kann eine breite Palette von Elementen von leichten bis hin zu schweren Elementen analysieren, was sie für verschiedene Anwendungen geeignet macht. Zerstörungsfreiheit: Die RFA erfordert keine Zerstörung der Probe, was ihre Anwendung auf wertvolle oder empfindliche Materialien ermöglicht. Präzision: Durch den Einsatz modernster Instrumente und Kalibrierungsverfahren können genaue und zuverlässige Analyseergebnisse erzielt werden. Unsere Röntgenfluoreszenzanalysen werden in verschiedenen Branchen und Anwendungsbereichen eingesetzt, darunter Geologie, Bergbau, Metallurgie, Umweltwissenschaften, Archäologie, Kunstrestaurierung und Qualitätskontrolle. Wir sind bestrebt, hochwertige und zuverlässige Ergebnisse bereitzustellen, um unseren Kunden dabei zu helfen, fundierte Entscheidungen zu treffen und ihre Ziele zu erreichen.
Computertomografie

Computertomografie

Die TQD bietet zukunftsweisende zerstörungsfreie Werkstoff- bzw. Bauteilprüfungen mit hauseigenem Computertomographen (CT), die eine ganzheitliche Betrachtung aller Bauteilbereiche ermöglichen. Die von uns angebotene Durchstrahlungsprüfung ist unter anderem für das Auffinden sogenannter Volumenfehler (z. B. Poren, Lunker oder Schlacken) in den verschiedensten Werkstoffen geeignet. Inhomogenitäten, Fehler oder unterschiedliche Materialstärken schwächen dabei die zum Durchstrahlen genutzte energiereiche Strahlung beim Durchdringen des Prüfobjektes in unter-schiedlicher Intensität. Ein digitaler Bildwandler erfasst die Intensität als Grauwertunterschied (Graustufen). Die damit er-zeugten zweidimensionalen Abbildungen werden anschließend durch unser hochmodernes Bildverarbeitungssystem aufbereitet und sowohl visuell als auch automatisch ausgewertet. So können die bei der Prüfung ermittelten Grauwerte beispielsweise genutzt werden, um Inhomogenitäten im Material des kompletten Bauteils darzustellen. Durch eine selektive Definition ermittelter Werte ist es uns weiterhin möglich, deren Größe und Verteilung im Bauteil zu visualisieren. Damit sind unter anderem Rückschlüsse auf Schwachstellen ableitbar. Mit der digitalen Aufbereitung zirkular erstellter Durchstrahlungsbilder können Volumenkörper erstellt werden, die wiederum zu verschiedenen kundenspezifischen Analysen in Hinblick auf Materialinhomogenitäten, Maßhaltigkeit im Vergleich zu CAD Daten und vieles mehr herangezogen werden können. Synergien für Ihren Erfolg als Unternehmen generieren sich dadurch u.a. für die:  Überwachung und Verbesserung der Qualität Ihrer Produkte  Dokumentation bei Herstellung bzw. Entwicklung von Sonderfertigungen, Erstmustern oder Prototypen  Testbegleitende Prüfung von Bauteilen  Effektivere Gestaltung und Kostenreduzierung in relevanten Unternehmensbereichen wie Produktion, Entwicklung und Forschung  Kontrolle von Montage, Dichtungen sowie der Pass- und Maßhaltigkeit  Detaillierte und ganzheitliche Fehlerdetektion, insbesondere bei Vorliegen komplexer Geometrien  Ökonomische und v.a. exakte Vermessung von Bauteilen und ihren Strukturen Dimensionen: Ø max 500mm, h max 600mm, bis 50 kg CT Anlage: phoenix v|tome|x m
MicroGraph System

MicroGraph System

Modulares System zur Schliffbildanalyse Übersicht Die Schliffbildanalyse von Crimpverbindungen ist schnell ein integraler Bestandteil der Crimp-Qualitätskontrolle geworden. Mit dem MicroGraph System (MGS) können Schliffbilder von Crimpverbindungen in einem Bruchteil der Zeit erstellt werden, die konventionelle Methoden benötigen würden. Der kombinierte Säge-Polier Prozess, der innovative Elektrolyt Reinigungsprozess und präzise Optik liefern qualitativ hochwertige Bilder für die genaue Analyse der Verbindung. Das Hartmetallsägeblatt schneidet so sauber, dass die Polierscheibe häufig nicht benötigt wird. Schleuniger´s MicroGraph System ist ein Komplettsystem zur Schliffbildanalyse einer Vielzahl unterschiedlicher Produkte. Das MGS beinhaltet die SawPolish Unit (SPU), die ElectrolyteStaining Unit (ESU 6) und die MacroZoom Unit (MZU 1.3) mit Analysesoftware. Abhängig von Größe und Bereich der zu analysierenden Muster können die Systeme kleinere oder größere SPU Geräte beinhalten. Das MGS 6 ist mit der SPU 6 für die Verarbeitung von Mustern bis zu 6 mm² ausgestattet. Das MGS 60 verfügt über die SPU 60 für Querschnitte von bis zu 60 mm². Optional sind ergonomisch gestaltete Arbeitstische oder fahrbare Arbeitstische erhältlich, abhängig vom geplanten Arbeitsprozess und den Raumanforderungen. Optionen und Zubehör sind in den jeweiligen Seiten der Komponenten zu finden. Schnelle und wirtschaftliche Ausrüstung zur Schliffbildanalyse Einfache und effiziente Software zur Analyse und Dokumentation Modulare Komponenten bieten höchste Flexibilität Verschiedene Musterhalter und Optionen für ein großes Spektrum von Anwendungen Verarbeitungsmöglichkeiten Potting for cutting complete connectors (IDC) Standard Crimp (Cross & Longitudinal) Machined Contact (Indent Crimp) Welded connections Anwendungsbereich Das MicroGraph System kann für eine Vielzahl von Anwendungen genutzt werden, nicht nur zur Schliffbildanalyse von Crimpverbindungen. Elektrische Verbindungen (z.B. gecrimpt, geschweißt oder gelötet) werden aufgeschnitten (gesägt), poliert (falls notwendig), gereinigt und visuell analysiert. Zur Optimierung des Arbeitsablaufes abhängig vom Arbeitsprozess und von den Raumanforderungen sind ergonomisch gestaltete Arbeitstische erhältlich. Das komplette System kann auch in mobile Wagen integriert werden, so dass eine mobile Station zur Qualitätskontrolle entsteht. Merkmale Modulares System für eine Vielzahl von Anwendungen Software Schnittstelle zur Schleuniger CrimpCenter Familie Zahlreiche Konfigurationsmöglichkeiten für verschiedenste Produktionsanforderungen Optionen Arbeitstisch mit integriertem PC Mobiler Wagen Absaugsystem Optionaler Arbeitstisch: Optionaler Arbeitstisch (ohne Komponenten) 1107 x 768 x 951 mm (43.6 x 30.2 x 37.4”) Optionaler mobiler Wagen (ohne Komponenten)600 x 600 x 1200 mm (23.6 x 23.6 x 47.2”) CE-Konformität: Die MicroGraph System entspricht vollumfänglich den CE und EMV- Maschinenrichtlinien (mechanische und elektrische Sicherheit, elektromagnetische Verträglichkeit).
Messtechnik

Messtechnik

"Was du nicht messen kannst, kannst du nicht lenken." (Peter Drucker) Während des Produktionsprozesses sorgen kontinuierliche Qualitätskontrollen für ein präzises Endprodukt. Hierdurch können wir eine gleich bleibend qualitativ hochwertige Fertigung Ihrer Produkte sicherstellen. Für äußerste Genauigkeit führen wir Kontrollen mit einer CNC-3D Koordinatenmessmaschine der Firma Mitutoyo durch. Neben den üblichen Messmitteln wie Mikrometer, Messschieber, Lehren etc. stehen noch folgende Messmittel zur Verfügung: - 3-Koordinaten-Messmaschine von Mitutoyo Messbereich 1100x600x600 (X,Y,Z) - Profilprojektor von Schneider Messtechnik Messbereich 300mm - Rauheitsmessgerät von Mitutoyo - Härteprüfgerät
Spektralanalyse

Spektralanalyse

Emissionsspektrometer SpectromaXx Mit unserem Spektrometer lassen sich alle in der Metallindustrie notwendigen Elemente bestimmen. Wir können für Sie Schmelz- und Stückanalysen durchführen. Schnelle und präzise Datenauswertung inkl. Berichtserstellung durch Spark Analyzer Vision MX Software
Beugungsspektrometer

Beugungsspektrometer

Das Beugungsspektrometer ist in der Lage, eine Partikelgrößenverteilung aus einer Ansammlung von Teilchen lokal zu messen und die Daten in einer geeigneten Weise zu verarbeiten. In vielen chemikalischen und physikalischen Prozessen treten Partikel in der Größenordnung zwischen 1 µm und wenigen mm auf, deren Größe bzw. Größenverteilung prozessbestimmend sind oder zumindest einen wichtigen Einfluss auf den Prozess ausüben. Beispiele gibt es aus der Nahrungsmittelherstellung, der Pharmazie und der Prozesschemie sowie aus den verschiedenen Verbrennungsprozessen in Turbinen, Motoren, bei der Kohlestaub-, Kraftstoff- und Klärschlammverbrennung in Kraftwerken, in Herstellungsprozessen und nicht zuletzt im Körperpflegebereich. Das Beugungsspektrometer ist in der Lage, eine Partikelgrößenverteilung aus einer Ansammlung von Teilchen lokal zu messen und die Daten in einer geeigneten Weise zu verarbeiten. Dabei können die Partikel als Feststoff in Gas und Flüssigkeit, als Tropfen in Flüssigkeit und Gas sowie als Gasblasen in Flüssigkeit auftreten. Wichtig ist für die Messung nur, dass die beiden Stoffe unterschiedliche optische Eigenschaften haben. Dann bietet das Beugungsspektrometer den Vorteil einer berührungslosen, schnellen Messung über einen weiten Bereich der Partikelgrößen. Insbesondere bei der Zerstäubung von Flüssigkeiten bzw. Suspensionen ist das Beugungspektrometer zu einem Standardwerkzeug geworden. Auf dem Bild (unten rechts) ist der optische Aufbau eines Laser-Beugungsspektrometers dargestellt. Der monochromatische Strahl des Lasers (1) – typischerweise ein He-Ne-Laser niedriger Leistung – wird in der Strahlaufweitungseinheit (2) aufgeweitet und mit Hilfe einer Linse parallelisiert. Zwischen dieser Linse und einer nachgeschalteten Fourier-Linse (4) passiert das Teilchenkollektiv (3) den aufgeweiteten Laserstrahl. Der Abstand lF-l bezeichnet hier den Arbeitsbereich der Fourier-Linse und f ihre Brennweite. Die Fourier-Linse sorgt dafür, dass das Beugungsbild eines Partikels bestimmter Größe unabhängig von der Position des Partikels im Messvolumen immer an der gleichen Stelle des Ringdetektors (8) abgebildet wird. Das von den Partikeln gebeugte Licht (6,7) bildet auf dem halbkreisförmigen Detektor ein radialsymmetrisches Beugungsbild.
Spektroskopie

Spektroskopie

Optische Emissionsspektroskopie (ICP-OES) Atom-Absorptionsspektroskopie AAS (Flamme, Graphitrohr, Hydrid) Infrarot-Spektroskopie (IR) UV/VIS-Photometrie
Spektroskope

Spektroskope

Laborspektroskope zur Messung von Emissions- und Absorptionsspektren. Alle Spektroskope Handgerät ohne Wellenlängenskala Handgerät mit Wellenlängenskala Spektroskop nach Kirchhoff-Bunsen
Zur Chromatographie

Zur Chromatographie

UHPLC und HPLC UV/Vis Fluoreszenz Brechungsindex Gaschromatographen (FID) mit Headspace-Applikation Dünnschichtchromatographie mit DC-Applikator und Densitometer
Strahlen

Strahlen

Auf Wunsch strahlen wir Ihre Werkstücke um eine anmutender erscheinende Oberfläche zu erzielen. Dabei verwenden wir unterschiedlichste Granulate wie zum Beispiel Glasperlen oder Edelkorund. Hierbei können wir Oberflächen verdichten oder mattieren.
Messtechnik

Messtechnik

Unser Messlabor ist ausgestattet mit einer Wenzel Koorinatenmessmaschine, einer Keyence, einem Messmikroskope und allen erforderlichen Messmittel, um die Qualität zu gewährleisten. Unsere Leistungen: - Erstellung von Erstmusterprüfberichten - Einzelteilmessungen - Serienmessungen - Teilzeichnungen - Lohn- und Auftragsmessung - 3D-CAD Datenmessung - Spezielle Messprotokolle - Personalqualifikation - Schulungen
Röntgeninspektion

Röntgeninspektion

Die röntgenographische Abbildung ermöglicht den Blick in das Innere von Komponenten, um Hinweise auf mögliche Ursachen von Ausfällen und Funktionsstörungen zu finden. Vor allem in mikrotechnischen Aufbauten sind eine Vielzahl von Funktions- und Verbindungselementen aus unterschiedlichsten Werkstoffen auf engem Raum konzentriert, oftmals vergossen und somit einer visuellen Inspektion nicht zugänglich. Die röntgenographische Abbildung ermöglicht den Blick in das Innere von Komponenten, um Hinweise auf mögliche Ursachen von Ausfällen und Funktionsstörungen zu finden. Der Vorteil besteht neben der allumfassend dreidimensionalen Abbildung des Objektvolumens auch in der bauteilerhaltenden Methodik, mit der zunächst die vorliegenden Gegebenheiten im Verbund geprüft werden. Bei Bedarf kann mit weiterführenden Methoden (z.B. Mikroskopie am metallografischen Schliff) gezielt die mit Röntgen-CT detektierten Auffälligkeiten im Detail untersucht werden. Diese und andere ergänzende Untersuchungen können sich somit gezielt auf ausgewählte Bereiche in der Umgebung der Schadensstelle konzentrieren. Darüber hinaus lassen sich mit Röntgen-CT auch geometrische Informationen ableiten, die im Rahmen numerischer Simulationen die Modellierung unterstützen. Versuchsreihen, in denen Komponenten durch Einwirkung äußerer Belastung (z.B. Thermoschock, Korrosionsprüfstand, Powercycling, Vibration, ...) gestresst werden, lassen sich ebenfalls mit Röntgen-CT begleiten und ermöglichen so einen direkten Vergleich verschiedener Laststufen an ein und demselben Bauteil. Für eine weiterführende Bewertung wir eine Verformungsanalyse an den dabei erfassten CT-Daten durchführen, um beispielsweise Stellen erhöhter Deformation im Objektvolumen zu detektieren. Die zur Verfügung stehende Gerätetechnik ist optimiert für die Röntgenprüfung kleinerer Objekte mit hoher Auflösung. Gerne beraten wir Sie im konkreten Fall bei der Umsetzung Ihrer Prüfaufgabe.
Verschleißmessung

Verschleißmessung

Verzahnungswerkzeuge sind in unserer Branche ein großes Thema – nicht nur bei der Herstellung und Anwendung, sondern erst recht beim Nachschärfen, Prüfen und Protokollieren. Nicht selten ist der Aufwand zum Schärfen und Prüfen der Werkzeuge eklatant hoch, um den Ansprüchen an Genauigkeit und Formtreue gerecht zu werden. Geht es doch beim Nachschärfen insbesondere darum, eine Konturverzerrung des Fräserprofils zu vermeiden und gleichzeitig möglichst wenig Material abzutragen, um die Lebensdauer des Werkzeugs hoch zu halten. Ein Thema, das bei Schleif- und Schärfbetrieben sehr oft die Spreu vom Weizen trennt.
Computertomographie

Computertomographie

Maßgenauigkeit und die einwandfreie Beschaffenheit von Bauteilen sind in der industriellen Fertigung von entscheidender Bedeutung. Die industrielle Computertomographie (kurz ICT) stellt hier ein wichtiges Instrument zur Qualitätssicherung dar. Im Vergleich zu den Vermessungsmöglichkeiten mit Koordinatenmessgeräten bietet sie einen wesentlichen Mehrwert: Die Computertomographie erlaubt es, einen Blick in das Innere von Bauteilen zu werfen und diese präzise zu untersuchen, ohne sie zu beschädigen. Die erzeugten 3D-Röntgenaufnahmen machen die innere und äußere Geometrie des Bauteils sowie die Anordnung verschiedener Werkstoffe sichtbar. Maß- und Formabweichungen können ebenso wie sonstige Qualitätsmängel (z.B. Einschlüsse, Lunker, Schweißfehler und andere Bauteildefekte) schon in einem frühen Stadium des Fertigungsprozesses erkannt werden, bevor das Bauteil weiteren Bearbeitungsschritten zugeführt wird. Auch Nachmessungen und erweiterte Analysen können durch die digitalisierte Archivierung jederzeit vorgenommen werden. Ein weiterer Vorteil: Die bei der industriellen Computertomographie erzeugten 3D-Aufnahmen können auch zur Flächenrückführung verwendet werden. So können Bauteile im Rahmen des „Reverse Engineering“ anhand der ICT-Daten als 3D-Modell rekonstruiert und für CAD-Systeme zur Verfügung gestellt werden. Die industrielle Computertomographie im Überblick: Zerstörungsfreie Vermessung und Prüfung von Bauteilen (innen und außen) Diverse Materialen von Kunststoffen über Leicht- und Buntmetalle bis hin zu Stahl 3D-Digitalisierung und Archivierung von Prüflingen Unkomplizierte Datenübertragung Farbcodierte 3D-Darstellung von Form- und Maßabweichungen Inspektion der Bauteilbeschaffenheit und Defektanalyse Untersuchung kleiner und größerer Stückzahlen (automatisierte Bestückung und Datenaufbereitung)
Messtechnik

Messtechnik

Mit dem Digitalen Messprojektor IM -8000 von Keyence messen wir auf Knopfdruck Laserplatinen für Einzel- oder Serienmessung in höchster Präzession Messfläche: 200mm x 300mm Auf Wunsch erstellen wir Ihnen Ihren ganz eigenen Prüfbericht Unsere Stärken sind Metallbearbeitung rund um Stuttgart, Heilbronn, Öhringen
Rasterelektronenmikroskopie (REM) ist eine leistungsstarke Methode zur Untersuchung der Oberflächenstruktur

Rasterelektronenmikroskopie (REM) ist eine leistungsstarke Methode zur Untersuchung der Oberflächenstruktur

Die Rasterelektronenmikroskopie (REM) ist eine leistungsstarke Methode zur Untersuchung der Oberflächenstruktur und Zusammensetzung von Materialien. Mit unserer hochmodernen REM-Ausrüstung bieten wir Ihnen detaillierte und hochauflösende Bilder, die Ihnen wertvolle Einblicke in die Mikrostruktur Ihrer Werkstoffe liefern. Unsere erfahrenen Techniker sorgen für präzise Analysen und fundierte Ergebnisse. Nutzen Sie unsere REM-Dienstleistungen, um die Qualität und Leistungsfähigkeit Ihrer Produkte zu optimieren. Unsere Rasterelektronenmikroskopie-Dienstleistung bietet eine hochauflösende Analyse der Oberflächenstruktur von Materialien. Mit modernster Technologie und erfahrenen Fachleuten erstellen wir detaillierte Bilder und Analysen, um die Mikrostruktur und Zusammensetzung von Materialien zu bestimmen. Diese Dienstleistung ist ideal für Unternehmen, die eine präzise Charakterisierung ihrer Materialien benötigen.
Labor für Optische Profilometrie

Labor für Optische Profilometrie

schnell, berührungslos, genormte Rauheitsbestimmung (DIN EN ISO 4287) Die optische Profilometrie ist ein Analyseverfahren zur berührungslosen Bestimmung der Topografie von Oberflächen verschiedenster Materialien wie Metallen, Keramiken, Halbleitern, Kunststoffen, Polymeren, Gummi, etc. Neuere Geräte der optischen Profilometrie erreichen dabei Tiefenauflösungen von ca. 1 nm. Für die analytische Arbeit stehen verschiedene Messmodi zur Verfügung, die eine Bestimmung von Probenrauheiten nach DIN EN ISO 4287 erlauben. Derartige Analysen können selbst an optisch aktiven Medien (z.B. Gläsern, Lichtwellenleitern, Optiken...) nach einer entsprechenden Probenvorbereitung durchgeführt werden. Details zur optischen Profilometrie im Labor Messprinzip - Informationsgehalt - analytische Möglichkeiten Mittels optischer Profilometrie kann die Topografie einer Oberfläche berührungslos mit einer vertikalen Auflösung von bis zu einem nm untersucht werden. Das im Labor der Tascon GmbH eingesetzte Messgerät erlaubt sowohl Analysen mit der konfokalen Mikroskopie als auch mit der Weißlicht-Interferometrie. Bei der konfokalen Mikroskopie wird ein monochromatischer Lichtstrahl auf einen Probenoberfläche fokussiert. Durch die Verwendung geeigneter Blenden wird sichergestellt, dass nur das in der Fokusebene reflektierte Licht den bildgebenden CCD-Sensor erreicht. Somit wird nur die im Fokus des einfallenden Lichts ausgeleuchtete Teilfläche für die Oberflächenanalyse bildgebend erfasst. Durch eine rechnergesteuerte, kontinuierliche Variation des Abstands zwischen Probenoberfläche und optischem System werden entsprechende Einzelbilder der Probenoberfläche gewonnen. Diese Bilder dienen zur Berechnung eines dreidimensionalen Modells der Probenoberfläche. Die Daten können dann anschließend zur Analyse der Oberflächentopografie und Oberflächenstruktur ausgewertet werden. Für die Profilometrie mittels einer interferometrischen Analyse (z.B. Weißlicht Interferometrie) wird die Probenoberfläche mit monochromatischem Licht bestrahlt. Während der Messung wird der Abstand zwischen der Probe und dem Objektiv des Interferometers in kleinen Schritten vergrößert. Aufgrund der Topographie treten für jeden Punkt der Oberfläche verschiedene Laufzeitunterschiede zwischen dem reflektierten Lichtstrahl und einem Referenzlichtstrahl auf. Die Überlagerung beider Lichtstrahlen resultiert in einem Interferenzmuster, das sich während der feinschrittigen Änderung des vertikalen Abstands zur Probe über die Oberfläche bewegt. Aus diesen Abfolgen von Interferenzbildern ergibt sich für jeden Objektpunkt ein Interferogramm, aus dem sich die Probentopografie und andere Oberflächenparameter der Profilometrie berechnen lassen. Anhand der analytischen Fragestellung und der Probeneigenschaften wird entschieden, welche der beiden Messmethoden, Weißlichtinterferometrie oder konfokale Mikroskopie, zum Einsatz kommt. Als Proben sind alle reflektierenden oder nicht transparenten Oberflächen mit Höhenunterschieden von maximal 2 cm geeignet. Analysen optisch transparenter Probensysteme (z.B. Spiegel, Gläser, ...) sind im Labor nur eingeschränkt möglich. Für eine genaue Ermittlung von topographischen Informationen empfiehlt es sich, bei diesen Systemen vor der Analyse im Labor einen dünnen, reflektierenden Metallfilm auf die Oberfläche abzuscheiden. Wenn die Analysen mit optischer Profilometrie an den Oberflächen dennoch nicht möglich sind, dann gibt es darüber hinaus zahlreiche andere Methoden zur Bestimmung der Oberflächentopographie im
Chroma

Chroma

Klassiker-Bandmaße mit großer Bandbreite von 25mm. Optimale Lesbarkeit aller Messwerte und beste Bandstabilität bis 2,20m. Chroma 10m längstes Taschenbandmaß mit Rücklaufautomatik. Artikelnummer: 610816 Druckbereich: 40mm x 35mm Gewicht: 418 g Maße: 84mm x 84mm x 42mm Zolltarifnummer: 90178010