Finden Sie schnell slizium für Ihr Unternehmen: 7 Ergebnisse

Siliziumgitter

Siliziumgitter

Für Anwendungen im Bereich der Optik und Elektronenoptik fertigen wir sehr präzise Siliziumgitter. Diese Gitter bestehen aus Siliziumstegen mit hohem Aspektverhältnis, die große Flächen überspannen. Das hohe Aspektverhältnis in Kombination mit dem hohen E-Modul von Silizium erlaubt es hierbei mechanisch sehr stabile Gitter zu realisieren. Wir fertigen die Gitter aus einkristallinem Silizium. Daher besitzen sie keine mechanischen Spannungen und sind sehr formtreu. Durch die Fertigung der Gitter mit Hilfe von Ätzprozessen können wir sie gratfrei herstellen. Darüber hinaus können wir durch weitere Bearbeitung konvexe Kanten zusätzlich abrunden, was bei Anwendung der Gitter mit hohen elektrischen Feldern wichtig sein kann. Weitere wichtige Eigenschaften sind die chemische Resistenz und dadurch die Einsetzbarkeit für biologische und medizinische Anwendungen, sowie die hohe thermische Stabilität. Anwendung: Ideale Anwendungsgebiete für Siliziumgitter sind die Ionen- und Elektronenoptik, Röntgenoptik, UV-Optik und Biologie. Durch die hohe mechanische Stabilität der Siliziumstege können Energiefilter mit sehr hoher Transmission gebaut werden. Die Gratfreiheit ist für diese elektronenoptische Anwendung ein weiterer wichtiger Aspekt. Durch eine zusätzliche Beschichtung der Gitter mit Röntgenstrahlung absorbierenden Materialien lassen sich Streustrahlungsfilter realisieren. Im Bereich biologischer Anwendungen können mit Siliziumgittern beispielsweise Zellsiebe realisiert werden. Spezifikationen: Maximale Gitterfläche: ca. 100 mm Minimale Stegbreite: ca. 1µm Aspektverhältnis der Stege: bis 15 Ebenheit: 0.3µm / mm Maximale Temperatur: einige 100°C Positionstoleranz: < 1µm Strukturtreue: ~ 1µm
Dichtstoffe für Bau- und Baunebengewerbe

Dichtstoffe für Bau- und Baunebengewerbe

Großhandel mit Dichtststoffen aller Art für Sanitärbetriebe, Baugewerbe, Baunebengewerbe, Abgabe nur Kartonweise
Tombak CuZn15

Tombak CuZn15

Tombak ist eine Legierung aus Kupfer und Zink, die für ihre hervorragende Korrosionsbeständigkeit und gute Verarbeitbarkeit bekannt ist. Die Legierung CuZn15 bietet eine ausgezeichnete Kombination aus Festigkeit und Duktilität, was sie ideal für den Einsatz in anspruchsvollen Umgebungen macht. Tombak wird häufig in der Bauindustrie, im Maschinenbau und in der Elektronik eingesetzt. Die Vielseitigkeit von Tombak macht es zu einer bevorzugten Wahl für viele industrielle Anwendungen. Es bietet eine hervorragende Kombination aus Festigkeit, Duktilität und Korrosionsbeständigkeit, was es ideal für den Einsatz in anspruchsvollen Umgebungen macht. Tombakprodukte sind in verschiedenen Formen und Größen erhältlich, um den spezifischen Anforderungen der Kunden gerecht zu werden. Sie sind eine wertvolle Ressource für Unternehmen, die Wert auf Qualität und Zuverlässigkeit legen.
Siliziumstrukturen

Siliziumstrukturen

Unsere Erfahrung im Bereich der Strukturierung von Silizium ermöglicht es uns komplexe Siliziumbauteile zu realisieren. Als Basis dient die Strukturierung durch nasschemische Ätzprozesse oder durch trockenchemische Plasmaätzprozesse. Hiermit lassen sich Vertiefungen oder Stege mit senkrechtem, schrägem oder konkavem Seitenwandprofil herstellen. Durch Kombination unterschiedlicher Prozesse von einer oder beiden Seiten auf dem Siliziumsubstrat, können wir sehr komplexe Geometrien realisieren. Auch komplett durch das Substrat reichende Strukturierungen sind möglich. Durch den Einsatz von SOI Substraten lassen sich sehr geringe Dickentoleranzen von ca. 300 nm erreichen. Designs die mit trockenchemischem Ätzen in das Silizium übertragen werden, können in weiten Bereichen frei gestaltet werden. Beim nasschemischen Ätzen lassen sich orthogonal zueinander liegende Strukturen sehr gut realisieren. Durch die Kombination mit weiteren Fertigungsprozessen, wie der Erzeugung von Membranen, der Dotierung oder der Metallisierung, um nur wenige zu nennen, können wir vielfältige Funktionen integrieren. Beispielsweise können so mechanische Verformungen elektrisch detektierbar werden, heizbare Bereiche eingebaut oder Elektroden hinzugefügt werden. Besondere Eigenschaften des einkristallinen Siliziums sind seine Resistenz gegenüber den meisten chemischen Substanzen, kein Verzug unter thermischer Belastung und ein hoher thermischer Einsatzbereich. Durch seine hohe chemisch Stabilität ist Silizium auch für biologische Anwendungen sehr gut geeignet. Anwendung: Mehrstufige Siliziumteile finden Ihre Anwendung beispielsweise in der Elektronenoptik, wo sie in Kombination mit galvanisch abgeschiedenen Metallen (z.B. Gold) sehr präzise Elektrodenstrukturen bilden. Auch optische Bauteile lassen sich aus Silizium fertigen. So bieten präzise Blenden aus Silizium gegenüber strukturierten Metallisierungen auf Glas den Vorteil, dass keine Grenzflächenreflexe beim Lichteintritt auftreten und im Bereich Deep UV kein absorbierendes Material vorhanden ist. Für biologische oder medizinische Anwendungen eignet sich Silizium aufgrund seiner chemischen Stabilität. Heißprägeformen oder Master dafür können mit diesem Verfahren ebenfalls leicht angefertigt werden. Spezifikationen: Die exakt erreichbaren Spezifikationen hängen von Designparametern wie Bauteilhöhe, Strukturgröße und Zahl der Ebenen ab. Daher können hier nur Orientierungswerte angegeben werden. Aspektverhältnis für senkrechte Strukturen: Bis zu 15 Seitenwandwinkel für senkrechte Strukturen: 90° +- 1° Seitenwandwinkel für schräge Strukturen: typ. 54,7° Strukturtreue bei Strukturtiefen von ca. 0-50 µm: <1µm Strukturtreue bei Strukturtiefen von 100-1000µm: ca. 2-10µm Strukturgrößen: ab ca. 500 nm Positionstoleranz innerhalb einer Ebene: <1µm Positionstoleranz von Ebene zu Ebene: <2µm Ebenheit: <0,3 µm / mm Bauteildicken: ~1µm – 1 mm Temperaturbereich: bis ca. 1000°C
Mikrospitzen

Mikrospitzen

Unser Technologie Know-how in der Herstellung von Mikrospitzen ermöglicht die Realisierung von Spitzen mit unterschiedlichsten Funktionen. So können wir Mikrospitzen aus elektrisch leitfähigem Silizium oder optisch transparenten Dielektrika fertigen. Abhängig vom verwendeten Material und Herstellungsprozess können Spitzenradien von wenigen Nanometern erreicht werden. Über die einfache Spitze hinaus sind wir in der Lage die Mikrospitzen mit zusätzlichen Ummantelungen zu versehen, die wir dann am vorderen Ende wieder öffnen. Dadurch können wir zum Beispiel optisch transparente Spitzen herstellen, die eine Austrittsöffnung für das Licht haben, die deutlich kleiner als die Lichtwellenlänge ist. Außerdem können elektrisch leitfähige Spitzen hergestellt werden, die eine elektrische Abschirmung besitzen. Anwendung: Durch Kombination mit weiteren Prozessen können wir Mikrospitzen zum Beispiel auch auf dünnen Cantilevern fertigen, die dann als Sensoren in der Rastersonden­mikroskopie eingesetzt werden können. Durch die geringen Spitzenradien erreicht man bei Anlegen einer elektrischen Spannung sehr hohe Feldstärken, wodurch sich Anwendungen im Bereich elektrischer Feldemitter ergeben. Auch die Möglichkeit die Spitzen mit einer zusätzlichen Ummantelungselektrode zu versehen, bietet Einsatz­möglichkeiten in der Elektronenoptik.
Mikrostrukturen aus Kunststoff

Mikrostrukturen aus Kunststoff

SU-8 als fotostrukturierbarer Kunststoff findet in einem weiten Bereich der Mikrotechnik Anwendung. Bauteile aus SU-8 lassen sich mit nahezu senkrechten Seitenwänden fertigen und erreichen dabei sehr hohe Aspektverhältnisse. In der 2D Designgestaltung sind wir bei SU-8 weitgehend frei. Komplexere Bauteile können wir durch mehrstufige Strukturierung realisieren. Wichtige Eigenschaften des SU-8 sind seine optische Transparenz, hohe chemische Beständigkeit sowie mechanische Stabilität. Anwendung: Aufgrund der Formfreiheit und der optischen Transparenz lassen sich mit SU-8 sehr gut optische Elemente wie Wellenleiter, Koppler oder Verzweiger herstellen. Die mechanischen Eigenschaften des Materials erlauben ebenfalls die Realisierung mechanischer Elemente wie Greifer, Zahnräder, Hebel, Federelemente, Siebe usw. Ein sehr häufiger Anwendungsbereich von SU-8 ist der Aufbau von Galvanikformen für die Herstellung von metallischen Mikroteilen. Die gute chemische Resistenz erlaubt die Realisierung von mikrofluidischen Komponenten. Spezifikationen: Dicke: 1-500 µm Aspektverhältnis: 10 für Kanäle; 15 für Stege Seitenwinkel: 90+/-1° Min. Strukturen: 1µm
Membranen

Membranen

Als Membran bezeichnen wir eine dünne Schicht aus einem Material, das eine sonst freie Fläche überspannt. Wir können Membranen aus Kunststoff, Dielektrika, Metall oder Silizium fertigen. Es ist einerseits möglich Membranen anzufertigen, die selbst strukturiert sind oder darauf weitere Strukturen aufzubringen. Typische Eigenschaften von Membranen sind, dass sie eine sehr hohe Transmission für Strahlung besitzen, die sie als Vollmaterial absorbieren würden. Außerdem besitzen Membranen eine geringe thermische Leitfähigkeit sowie Wärmekapazität. Daher eignen sich Membranen gut als Träger für Elemente, die möglichst schnell ihre Temperatur ändern sollen, wie zum Beispiel thermische Emitter oder Sensoren. Darüber hinaus können Membranen aus bestimmten Materialien eine Durchlässigkeit für Gase oder Flüssigkeiten besitzen. Anwendung: Aufgrund der geringen Wärmekapazität, die Membranen aufweisen, eignen sie sich sehr gut zur Realisierung schneller thermischer Sensoren, sowie thermischer Strahler. Weitere Anwendungsgebiete sind die Optik, die Röntgenoptik und die Elektronenoptik, wo Membranen als transparenter Träger optischer Elemente wie Blenden oder Gitter dienen können. Spezifikationen: Material: Polyimide, SU-8, Si3N4, Si, Metalle Dicke: wenige nm bis mehrere 100 µm Fläche: bis einige cm²