Finden Sie schnell hartungen für Ihr Unternehmen: 13 Ergebnisse

Randschichthärten

Randschichthärten

Flamm-, Induktions- und Laserhärten sind die drei gebräuchlichsten Randschichthärteverfahren. Seit Jahrzehnten finden sie bei der Härterei Gerster AG breite Verwendung. Begonnen hat die erfolgreiche Firmengeschichte 1950 mit dem Flammhärten. In der Folge wurde der Maschinenpark nach und nach auf die gegenwärtig 50 Randschichthärteanlagen erweitert. Über all die Jahre entwickelten unsere Spezialisten ein sehr spezifisches Know-how, und sie können Ihnen deshalb heute für jeden Bedarf die optimale Randschichthärtelösung anbieten. Heute wird das Randschichthärten vor allem in der Antriebstechnik bei Verzahnungen und Führungen angewendet.
Beizen

Beizen

Beizen von rostfreiem Stahl Badgröße: Bad 5: 3200 x 1900 x 700 Die Problematik Rost und säurebeständige Stähle gewinnen immer neue Anwendungsbereiche. Werden sie bearbeitet, droht jedoch Spannungsriss oder Lochkorrosion. Abhilfe schafft da das Beizen. Wie kommt es zu Korrosion? Bei der Korrosion handelt es sich um einen elektrochemischen Prozess, der Potentialdifferenz und Elektrolyten voraussetzt. Was ist Spannungskorrosion? Die Spannungskorrosion ist eine der häufigsten und gefährlichsten Korrosionsarten. Auslöser sind mechanische Beanspruchungen der Oberfläche, wie beim Schruppen, Schleifen, Fräsen oder Schneiden vorkommen. Wieso beizen? Beim Glasperlen werden Kleinstpartikel in die Oberfläche eingeschlagen, woraus sich in der Praxis und in Übereinstimmung mit Laborversuchen schlechte Korrosionsschutzwerte zeigen. Deshalb sollte nach dem Glasperlstrahlen gebeizt werden, um diese Fremdkörper, in deren Umgebung sich keine Passivschicht bilden kann, zu entfernen. Wie lange dauert beizen? Die Beizzeiten richten sich nach dem zu beizenden Werkstoff, der vorhandenen Oberflächenbeschaffenheit sowie der gewünschten Oberfläche. Ergebnis Auf der gebeizten Oberfläche der Werkstücke bildet sich nach dem Spülen an der Luft eine Korrosionsschützende Passivschicht. (Passivierung)
Oberflächenbehandlung

Oberflächenbehandlung

Die Oberflächenbehandlung gehört zu unserer Komplettlösung Soll das fertige Werkstück auch noch glänzen oder farbig leuchten? Die meisten unserer Kunden wünschen dies. Diverse Oberflächenbehandlungen führen wir selber aus. Was wir nicht selber ausführen (wie z.B. Pulverbeschichten, Eloxieren, Verzinken usw.) übergeben wir an unsere Partner, welche diese Arbeiten fachgerecht für uns erledigen. Wir organisieren alle Transporte, sichern die Qualität und liefern termingerecht. Von unseren Kunden sehr oft gewünscht : Pulverbeschichten • Eloxieren • Chromatieren • Elektropolieren • Verzinken Dazu gehört auch : • Verchromen, vernickeln • Phosphatieren • Härten, Carbonitrieren • Brünieren • Laserbeschriften • Siebdrucken Sämtliche Komponenten welche veredelt wurden, werden sauber verpackt eingelagert oder direkt ausgeliefert. Komplett organisiert Wir übernehmen jede Oberflächenbehandlung und offerieren Ihnen dies gleich mit. Wir freuen uns auf Ihre Anfrage.
Honen

Honen

Hohe Formgenauigkeit sowie präzise Bohrungen an gehärteten Bauteilen, erreichen wir durch das Honen. Wir verfügen auch bei diesem wichtigen Prozess über modernste Anlagen und jahrelange Erfahrung.
Zahnräder nach Kundenwunsch, gehärtet und geschliffen.

Zahnräder nach Kundenwunsch, gehärtet und geschliffen.

Präzisionsräder so individuell wie Ihre Ideen. Zahnrad innen oder aussenverzahnung. Wir fertigen Zahnräder ohne Einschränkung. Gehärtet, geschliffen und geprüft, gemessen und protokolliert. Verzahnen: Modul 0.5 bis 50. Durchmesser bis 3'000 mm ​Verzahnungsschleifen: Durchmesser bis 1'500 mm Materialien: Stahl, Kunststoff, Aluminium, Buntmetalle. Gusseisen - Sphäroguss - Bronzeguss Losgrössen: Einzel- oder Serienproduktion. Unsere Spezialität ist die Herstellung kundenspezifischer Verzahnungsteile nach Zeichnung.
Laserhärten

Laserhärten

Der Hochleistungsdiodenlaser erzeugt einen präzisen, Laserstrahl. Die zu behandelnde Werkstückoberfläche wird örtlich schnell erwärmt (> 1000 °C/Sekunde) und bis max. 1,5 mm tief umgewandelt. Die Wärmeableitung ins Werkstückinnere bewirkt eine Selbstabschreckung. Es entsteht eine gehärtete Spur mit sehr feinkörnigem Martensit. Ein Anlassen ist nicht notwendig. Vorteile des Laserhärtens. - Konturgetreu, präzis - Verzugsarm, keine Nachbearbeitung nötig - Selbstabschreckend (keine Verunreinigung durch Abschreckmedien) - Beweglich im 3D-Raum - Je nach Teilegeometrie blanke ­Oberflächen durch Härten unter Schutzgas Anwendungsbeispiele: - Steuerkurven - Blech-Umformwerkzeuge - Biegestempel - Anspruchsvolle Maschinenbauteile - Turbinenkomponenten - Führungen und Maschinenbetten - Verschleissflächen und -kanten Anlagenparameter: - 4 kW-Diodenlaser - Härtelängen bis 9000 mm - Spurbreiten bis ca. 30 mm - Kabine 9500 x 5000 x 4000 mm - Bauteilegewicht bis 10 Tonnen
Einatzhärten/Carbonitrieren

Einatzhärten/Carbonitrieren

Aufkohlen resp. Anreicherung des Randbereichs mit Kohlenstoff und Stickstoff mit darauf folgender Härtung im Öl. Aufkohlen Anreichern der Randschicht eines Werkstückes mit Kohlenstoff durch thermochemische Behandlung. Einsatzhärten Aufkohlen mit darauf folgender Härtung bei 850 bis 950 °C. Beim Härten wird in der angereicherten Randschicht eine hohe Härte mit verbessertem Verschleisswiderstand erreicht. Carbonitrieren Wie Einsatzhärten, jedoch zusätzliche Anreicherung der Randschicht mit Stickstoff. Härten bei 780 bis 850 °C.
Flammhärten

Flammhärten

Mittels speziellen Hochleistungsbrennern wird die Randzone mit ­Leistungen bis zu 2500 kW rasch auf ­Härtetemperatur gebracht und je nach Werkstoff abgeschreckt. Werk­stoffabhängig können Einhärtungstiefen bis zu 40 mm realisiert werden. Vorteile des Flammhärtens • Leistungsbedarf kann einfach angepasst werden • Grosse Einhärtungstiefen realisierbar • Behandlung von sehr grossen ¬ Bauteilen möglich Anwendungsbereiche für Stahl- und Gussteile • Walzen, Wellen, Kolben, Rollen • Kurven • Grosse Zahnräder • Schienen und Leisten • Maschinenbetten • Zylinder (Innen-Ø) Bauteilabmessungen • Bis Ø 800 x 11 000 mm, max. 6 Tonnen • Bis Ø 1400 x 650 mm, max. 2,5 Tonnen • Kubische BT bis 10 000 mm • Maximales Gewicht 10 Tonnen • Grössere Teile auf Anfrage
Härten von Aluminium

Härten von Aluminium

Aluminiumlegierungen können dank Abschrecken in Wasser und geeigneter Auslagerung gehärtet werden (-> Ausscheidungshärten). Das Prinzip des Ausscheidungshärtens unterscheidet sich stark vom Härten mittels Abschreckung. Aus einem homogenen Gefüge werden kleinste Teilchen ausgeschieden, welche den Werkstoff verfestigen. Dafür muss das Material zuerst in den lösungsgeglühten Zustand gebracht werden, bevor es anschliessend ausgelagert werden kann. Wird das Rohmaterial bereits lösungsgeglüht eingekauft, muss nach der Teilefertigung nur noch ausgelagert werden muss. Der Vorteil: Da keine Gefügeumwandlung stattfindet, ist das Auslagern sehr verzugsarm.
Vakuumhärten

Vakuumhärten

Verzugsarmes Härten dank Abkülung mit Stickstoffüberdruck. Geeignet für hochlegierte Stähle. Blanke Oberflächen. Hochlegierte Stähle (z.B. Kalt-, Warm- und Schnellarbeitsstähle, rostfreie Stähle) werden im Vakuum behandelt und mittels Gasüberdruck (bis 12 bar) abgeschreckt. Die Oberfläche bleibt dabei metallisch blank. Danach werden die Teile 1-3 Mal angelassen, um die gewünschten Eigenschaften einzustellen. Das Anlassen geschieht in der Regel an Luft oder im Schutzgas. Dabei sind leichte Verfärbungen (Anlassfarben) möglich. Die erreichbare Härte wird vom Kohlstoffgehalt bestimmt. Dieser beträgt bei härtbaren Stählen mindestens 0,2%. Die erreichbare Einhärtungstiefe wird durch die weiteren Legierungselemente beeinflusst.
Härten im Schutzgas

Härten im Schutzgas

Standard-Härteprozess für unlegierte und niedrig legierte Stähle Unlegierte und niedrig legierte Stähle werden in geregelter Atmosphäre erwärmt und im Öl abgeschreckt. Die gezielte Einstellung der Ofenatmosphäre verhindert das Ausdiffundieren des Kohlenstoffs, welcher für die Härtung nötig ist. Die Wahl des Härteöls beeinflusst nicht nur das Härteergebnis, sondern auch den Verzug des Bauteils. Beim Härten wird das Bauteil erwärmt und danach schnell abgekühlt (abgeschreckt). Durch die Gefügeumwandlung entsteht harter Martensit, der in einem anschliessenden Anlassvorgang entspannt wird. Die erreichbare Härte wird vom Kohlstoffgehalt bestimmt. Dieser beträgt bei härtbaren Stählen mindestens 0,2%. Die erreichbare Einhärtungstiefe wird durch die weiteren Legierungselemente beeinflusst.
Induktionshärten

Induktionshärten

Die induktive Erwärmung wird mit sehr hoher Leistungsdichte direkt im Bauteil erzeugt. Dabei wird der zu härtende Bereich sehr rasch auf Härtetemperatur gebracht und unmittelbar danach abgeschreckt. Je nach geforderter Einhärtetiefe und Bauteil­geometrie werden unterschiedliche Generatoren (Frequenzen) eingesetzt. Es wird zwischen drei Arten unterschieden: Hoch-, Mittel- und Zweifrequenzgeneratoren. Abhängig von Werkstoff- und Härteparameter steht eine Vielzahl an Abschreckmedien zur Optimierung der Härteergebnisse zur Verfügung, wie beispielsweise bis zu drei verschiedene Polymer-Konzentrationen auf unterschiedlichen Anlagen. Die Vorteile des Induktionshärtens: - Eng tolerierbare Härtezone - Hohe Reproduzierbarkeit - Teil- bis vollautomatisiert - Einzelstücke bis Grossserien - Konturgetreu durch Zweifrequenztechnik Die Anwendungsbereiche: - Wellen und Achsen - Stangenmaterial - Zahnräder - Zahnstangen - Zylinder - Kurven - Führungselemente, Führungsrohre - Allgemeine Maschinenbauteile - Schrauben - Kleinteile Die Bauteilabmessungen: - Ø bis 3000 mm - Länge bis 6000 mm - Gewicht bis 5 Tonnen Grössere Teile auf Anfrage Die Generatoren: - Leistung 20 bis 500 kW - Frequenz 3 bis 1200 kHz
Borieren

Borieren

Bei Behandlungstemperaturen im Bereich von ca. 800 bis 1000 °C wird die Randschicht eines Werkstückes mit Bor angereichert; es bilden sich geschlossene Boridschichten. Die Härte dieser Schicht liegt, abhängig vom Werkstoff, innerhalb 1500 bis 2100 HV. Die hohe Härte, aber auch die besondere Struktur der Schicht bringen einen ausserordentlich guten Verschleisswiderstand.