Finden Sie schnell durchhärtung für Ihr Unternehmen: 21 Ergebnisse

Vakuumhärten

Vakuumhärten

Eine Vielzahl hochlegierter Stähle und Edelstähle können nur unter sauerstofffreier Atmosphäre gehärtet bzw. geglüht werden. Dies geschieht in sogenannten Vakuumöfen in Temperaturbereichen bis zu 1200 °C, abgeschreckt wird mit gasförmigem Stickstoff. Bedingt durch die Ofen- und Prozesstechnik sind die Werkstückverzüge im Vergleich zum Schutzgashärten gering. Das Härtegut kommt in die kalte Ofenkammer, wird über vorbestimmte Temperatur-/Zeitprogramme erhitzt und dann unter hohem Stickstoffdruck abgehärtet. Durch den fehlenden Luftsauerstoff ist eine Reaktion an den Bauteiloberflächen nicht möglich. Das Ergebnis sind metallisch blanke Bauteile. Das Vakuumhärten findet bei H+W in Vakuumöfen verschiedener Abmessungen statt. Gängige Werkstoffe: Werkzeugstähle (wie z.B. 1.2379, 1.2343, 1.2436, 1.2767) Schnellarbeitsstähle (wie z.B. 1.3343) VA-Stähle (wie z.B. 1.4034, 1.4112)
Martensitisches Härten

Martensitisches Härten

Bei diesem Prozess werden Mehrzweck-Kammeröfen oder Durchlaufanlagen eingesetzt. Dabei werden die Stahl-Bauteile und Messer auf Härtetemperatur erwärmt und mit Öl abgeschreckt. Anschließend erfolgt noch ein Anlassprozess, um Spannungen im Material zu reduzieren und die gewünschte Härte zu erreichen. - Sehr hohe Härte und Festigkeit - Hohe Verschleißbeständigkeit - Hohe Temperaturbeständigkeit
Einsatzstähle

Einsatzstähle

Die Werkstoffgruppe der Einsatzstähle umfasst C-Stähle mit niedrigem Kohlenstoffgehalt bei guter Umformbarkeit und Feinschneidqualität. Durch die Einsatzhärtung weisen die Bauteile verschleißarme Oberflächenschichten mit hoher Härte bei ausreichender Zähigkeit im Kern aus. Sie vereinen somit zahlreiche Eigenschaften und Anwendungsmöglichkeiten in unterschiedlichsten Branchen. Zur Erhöhung der Verschleißfestigkeit können Sie außerdem Teilbereiche aufkohlen oder carbonitrieren. GÜTEN: C 10 E, C 15 E / ➔ gem. DIN EN 10132 BEHANDLUNGSZUSTÄNDE: Je nach Kundenwunsch liefern wir Behandlungszustände von weichgeglüht bis hochkalt verfestigt.
Lackierung

Lackierung

Durch den Einsatz moderner Roboterlackieranlagen mit vorgeschalteter Reinigung und Oberflächenaktivierung, sind wir in der Lage, auf individuelle Farbwünsche unserer Kunden einzugehen. Um unseren hohen Qualitätsanspruch zu gewährleisten, findet bei uns eine regelmäßige Überprüfung der Farbe, Glanzgrad und Schichtdicken statt.
Warum Verfestigungsstrahlen

Warum Verfestigungsstrahlen

steigert die Schwingfestigkeit im Zeit- und Dauerfestigkeitsbereich steigert die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion verhindert die Entstehung und Fortpflanzung von Rissen Das Verfahren ist bei allen metallischen Werkstoffen anwendbar! Eine höhere Schwingfestigkeit steigert entweder die zulässige Belastung eines Bauteiles oder die Sicherheit eines vorhandenen Bauteiles wird erhöht. Das Bauteil wird entweder dauerschwingfest oder die Zeitfestigkeit wird erhöht. Beispiele: Höhere Leistung bei gleichem Gewicht oder geringeres Gewicht bei gleicher Leistung Höhere Leistung bei gleicher Abmessung oder kleinere Abmessung bei gleicher Leistung Höhere Leistung bei gleichem Werkstoff oder größere Werkstoffauswahl bei gleicher Leistung Höhere Leistung bei gleicher Oberflächenqualität oder niedrigere Anforderung an die Oberflächenqualität bei gleicher Leistung Die elastische Verformung induziert in der plastifizierten Zone hohe Druckeigenspannungen. Das Bauteil wird durch die induzierte Druckeigenspannung an bzw. unter der Oberfläche von externen Zugspannungen entlastet und die Dauerschwingfestigkeit und die Beständigkeit gegen Spannungsriss- und Schwingungsrisskorrosion wird gesteigert. Gleichzeitig wird die Entstehung und Fortpflanzung von Rissen verhindert. Die Steigerung der Schwingfestigkeit ist bei Bauteilen mit hohen Kerb- und Formfaktoren, bei hohen Torsions- oder Biegespannungen, bei Stoßbelastungen, hochfesten und gehärteten Bauteilen relativ zur Ausgangsfestigkeit am größten. Strahlen lässt sich darüber hinaus zum Verdichten, Reinigen, Strippen, Strukturieren, Aufrauen, Mattieren, Glätten, Entgraten, Abtragen, Trennen, Gravieren und zum Umformen von dünnwandigen Bauteilen im elastischen Bereich einsetzen. Wirkung des Verfestigungsstrahlens Beim Verfestigungsstrahlen werden durch gezielten Beschuss mit durch Pressluft oder Fliehkraft beschleunigten, kugelförmigen Partikeln, die wie winzige Schmiedehämmer wirken, begrenzte plastische und elastische Verformungen in der Bauteilrandschicht erzeugt. Bei der Herz`schen Pressung werden die plastischen und elastischen Verformungen unter der Oberfläche erzeugt. Beide Wirkungen treten stets nebeneinander auf und werden durch die Strahlkenngrößen beeinflusst.
Compound

Compound

Mit höchster Sorgfalt und Präzision entwickeln wir maßgeschneiderte Compounds für die kunststoffverarbeitenden Industrie. GRAFE macht Kunststoff zu einem Hightechprodukt und entwickelt kontinuierlich innovative Funktionen und Farblösungen die perfekt auf Ihre Anforderungen zugeschnitten sind und in allen kunststoffverarbeitenden Industriezweigen ihre Anwendung finden.
Harteloxieren

Harteloxieren

Harte und verschleißfester Oberflächen auf Ihren Produkten aus Aluminium Harteloxierte Oberflächen erlauben den Einsatz Ihrer Produkte in Bereichen höchster Beanspruchung. Die von uns beschichteten Oberflächen kommen vornehmlich in der Fahrzeugindustrie (Stoßdämpfer- und Kupplungsteile) sowie im Sondermaschinenbau zur Anwendung. Wir erzeugen Schichtdicken von bis zu 100µm mit einer Schichthärte von ca. 500HV. Die erzeugten Oberflächen können zudem schwarz eingefärbt werden oder zur Verbesserung der Gleiteigenschaften mit PTFE (Teflon) imprägniert werden.
Arbeitsplatz aus Aluminiumprofil,  nach Kundenvorgaben

Arbeitsplatz aus Aluminiumprofil, nach Kundenvorgaben

Arbeitsplatz aus Aluminiumprofil, Flächenelementen, als Bausatz oder fertig montiert
ABKANTEN

ABKANTEN

In der Blechbearbeitung hat das Abkanten/Biegen eine sehr große Bedeutung. Viele Konstruktionen können durch komplexe Biegeteile vereinfacht oder sogar einteilig gefertigt werden. Damit entfallen aufwändige Schweißarbeiten und damit verbundene Kosten und Probleme. Unser Abkantpressen mit CNC-Steuerung bieten eine hohe Flexibilität und Zuverlässigkeit. Eine große Auswahl an Stempeln und Matrizen ermöglichen uns die verschiedensten Kantarbeiten durch zu führen. Mithilfe unserer 3D-CAD Software, können auch Komplexe Kantteile schnell konstruiert und passend für die zur Verfügung stehenden Werkzeuge abgewickelt werden. Diese werden mit Unterstützung des Easy-Form Winkelmesssystems, mit höchster Präzision, dem Kundenwunsch entsprechend gebogen. ABKANTPRESSEN LVD-PPEB 400 UND EHT-VARIOPRESS 175 Wir verfügen über zwei Abkantpressen. Durch die unterschiedliche Presskraft sind im Dünnblechbereich anspruchsvolle Konturen möglich, im Dickblechbereich kann mit großen Abkantlängen gearbeitet werden. EASY-FORM LASER WINKELMESSSYSTEM Präzise und konstante Biegeergebnisse mit dem Easy-Form Laser. Ein einzigartiges Winkelmess-System, das den Winkel während des Biegeprozesses in Echtzeit mit einem Laserstrahl misst und vom ersten Arbeitsgang an präzise Biegeergebnisse garantiert. ALLG. TECHNISCHE DATEN max. Presskraft 400 t max. Abkantlänge 6100 mm zw. den Ständern 5200 mm
Werkzeugbau

Werkzeugbau

Unsere Unternehmensgruppe verfügt über ein modernes Konstruktionsbüro mit ausgebildeten, erfahrenen Konstrukteuren. Sie arbeiten mit speziellen CAD/CAM-Software „VISI-Series“ für den Folgeverbundwerkzeugbau der Fa. Vero-International, sowie CAM-Software „PEPS“ der Firma CAMTEK.
CNC Dreh-Frästeile

CNC Dreh-Frästeile

CNC-Dreh-Frästeile zb: Schneckenwellen Flansche Stellringe Tauchhülsen Klemmringe Düsen Verschraubungen Verschlussschrauben Gehäuse härten Wir fertigen in Losgrößen von ca 20 Stück bis 10000 Stück im Durchmesserbereich bis 100mm von Stange und bis 300mm als Einlegeteile.
Wärmebehandlung

Wärmebehandlung

- Wärmebehandlung eigener Gussteile, sowie Lohnarbeiten - Warm ausgehärtet (T6) - Teilausgehärtet (T64) - Entspannungsglühen (auch für nicht aushärtbare Legierungen) - Weichglühen
Wir sind Ihr Spezialist für Blechverarbeitung und Blechfertigung

Wir sind Ihr Spezialist für Blechverarbeitung und Blechfertigung

Der Name Gothatec steht für die fachgerechte Fertigung von Baugruppen. Als erfahrenes Unternehmen verfügen wir über das technische Know-how, nachdem Blechverarbeitung, Einhausungsarbeiten und Co. verlangen. In unseren Fertigungshallen entstehen jeden Tag hochwertige Produkte für verschiedenste Branchen. Wenn es um anspruchsvolle Oberflächenbearbeitung geht, sind wir der Partner Ihrer Wahl im Raum Gotha. Unsere Erfahrung im Umgang mit verschiedensten Verfahrensweisen kombinieren wir mit innovativen Ideen, modernster Technik und einem erstklassigen Service. Das Ergebnis unserer Arbeit ist ein professionell gefertigtes und optimal auf Ihre Bedürfnisse abgestimmtes Produkt. Wir sind ein zukunftsorientierter Systemanbieter und realisieren Aufträge für mechanische Komponenten und Blechverarbeitung im gesamten Bundesgebiet – gern auch branchenübergreifend. Auf den folgenden Seiten erfahren Sie mehr über unser Leistungsportfolio.
Messing, Kunststoff

Messing, Kunststoff

Automatendrehteile konvensionell Dm. 4 - 20 mm Länge bis 30 mm Automatendrehteile CNC Dm. 4 - 42 mm Länge bis 100 mm
Alluminiumrahmen

Alluminiumrahmen

Stoffdruck UV- oder Sublimationsdruck Für Aluminiumspannrahmen
Terrassengleiterschrauben, inox gehärtet, (TX20) 4,2x24

Terrassengleiterschrauben, inox gehärtet, (TX20) 4,2x24

Terrassengleiterschrauben dienen der sicheren Befestigung des Terrassengleiters, unter dem Terrassenbelagholz bzw
Blindhärten

Blindhärten

unter „Blindhärten“ das Abhärten von Bauteilen, die aufgekohlt und anschließend partiell spanend bearbeitet wurden. Beim Zerspanen wurde die aufgekohlte Schicht entfernt. Daher erhalten die spanend bearbeiteten Bereiche beim Blindhärten aufgrund des fehlenden Kohlenstoffs eine deutlich geringere Härte als die nicht bearbeiteten Bereiche. Das Blindhärten findet bei H+W in Mehrzweckkammeröfen statt. Gängige Werkstoffe: Einsatzstähle (wie z.B. 1.7131 (16MnCr5) / 1.7139 (16MnCrS5), 1.7147 (20MnCr5) / 1.7149 (20MnCrS5), 1.2241 (41CrV4), 1.0401 (C15), 1.6587 (18CrNiMo7-6), …) Baustähle (wie z.B. 1.0570 (S355J2+N, St 52-3), 1.0037 (S235JR, St 37-2), …) Automatenstähle (wie z.B. 1.0715 (11SMn30) / 1.0718 (11SMnPb30), ETG 88, …)
Schutzgashärten

Schutzgashärten

Unter „Schutzgashärten“ versteht man das klassische Härten: Aufheizen auf Härtetemperatur mit anschließendem Abschrecken. Dabei wird im Ofeninneren eine Atmosphäre (das so genannte Schutzgas) erzeugt, die unerwünschte Reaktionen zwischen Bauteiloberfläche und der heißen Umgebungsluft unterbindet. Das Abschrecken erfolgt in speziellen Härteölen. Folgt nach dem Schutzgashärten ein Anlassen spricht man vom Vergüten. Das Schutzgashärten findet bei H+W in Mehrzweckkammeröfen statt. Gängige Werkstoffe: Vergütungsstähle (wie z.B. 1.7225 (42CrMo4), 1.0503 (C45), 1.2842 (90MnCrV8)) Lagerstähle (wie z.B. 1.3505 (100Cr6), 1.2210 (115CrV3))
Einsatzhärten

Einsatzhärten

Unter „Einsatzhärten“ versteht man das Anreichern des Randbereichs eines Werkstücks mit Kohlenstoff (Aufkohlen) mit anschließendem Härten. Dies geschieht bei H+W in einer kohlenstoffhaltigen Atmosphäre unter hohen Temperaturen. Das Abschrecken erfolgt in speziellen Härteölen. Durch das Aufkohlen der Randschicht und das anschließende Abhärten des gesamten Bauteils werden eine harte Randschicht und ein weicherer zäherer Kern erzeugt. Das Einsatzhärten findet bei H+W in Mehrzweckkammeröfen statt. Gängige Werkstoffe: - Einsatzstähle (wie z.B. 1.7131 (16MnCr5) / 1.7139 (16MnCrS5), 1.7147 (20MnCr5) / 1.7149 (20MnCrS5), 1.2241 (41CrV4), 1.0401 (C15), 1.6587 (18CrNiMo7-6), …)
Zonenhärten von Messern & Schneiden

Zonenhärten von Messern & Schneiden

Mit diesem Verfahren können vordefinierte Bereiche eines Bauteils mittels Induktionsspulen partiell gehärtet werden. Die temperierten Bauteile werden anschließend in einer Wasserlösung abgeschreckt und einem Anlassprozess zugeführt, um Spannungen im Material zu reduzieren. Hohe Härte in definierten Bauteilbereichen Hohe Festigkeit in definierten Bauteilbereichen Hohe Verschleißbeständigkeit in definierten Bauteilbereichen
Tiefkühlen

Tiefkühlen

Der Tiefkühlprozess bewirkt eine Umwandlung des Restaustenits in Martensit und ermöglicht somit die gezielte Gefügeumwandlung. Kohlenstoffreiche oder auch hochlegierte Stähle enthalten nach dem Härteprozess noch unerwünschten Restaustenit im Gefüge. Durch das Tiefkühlen wird dieser in gewünschten Martensit umgewandelt, so dass ein Wachstum der Bauteile durch eine erst spätere Umwandlung im Betrieb vermieden werden kann. Um das neu entstandene Gefüge zu entspannen, muss immer ein Anlassvorgang folgen. Im Anschluss an das meist mehrstündige Tiefkühlen können die Bauteile direkt in der Anlage entweder mur getrocknet oder auch direkt angelassen werden. Das Tiefkühlen findet bei H+W in zwei moderne Tiefkühlanlagen bei -120 °C statt. Als Kühlmedium kommt flüssiger Stickstoff zum Einsatz. Gängige Werkstoffe: Werkzeugstähle (wie z.B. 1.2379, 1.2436, 1.2767) VA-Stähle (wie z.B. 1.4112) Lagerstähle (wie z.B. 1.3505 (100Cr6), 1.2210 (115CrV3)