Finden Sie schnell druckerpatronen für Ihr Unternehmen: 6 Ergebnisse

3D-Druck

3D-Druck

mdexx verfügt über einen hochmodernen 3D-Drucker , der zahlreiche Vorteile für unsere Fertigungsprozesse bietet. Dieser 3D-Drucker ermöglicht es uns, Prototypen, Sonderanfertigungen und Ersatzteile in kürzester Zeit herzustellen. Durch die Verwendung des Druckers können wir den Entwicklungsprozess beschleunigen, maßgeschneiderte Lösungen für spezifische Kundenanforderungen bieten und präzise, langlebige Ersatzteile schnell produzieren, wodurch Ausfallzeiten minimiert und die Betriebseffizienz erheblich erhöht wird. Wir nutzen dabei eine breite Palette von Materialien, um unterschiedliche Anforderungen zu erfüllen. Mit Standardmaterialien wie ABS erzielen wir robuste und kosteneffiziente Ergebnisse für allgemeine Anwendungen. Für Anwendungen, die höhere Festigkeit und Haltbarkeit erfordern, setzen wir auf hochfestes Nylon CF (Carbonfaser-verstärktes Nylon), das außergewöhnliche mechanische Eigenschaften bietet. Darüber hinaus verwenden wir bahnzertifiziertes ULTEM 9085, ein Material, das speziell für die Luft- und Raumfahrtindustrie entwickelt wurde und hohe Temperaturen sowie anspruchsvolle Umweltbedingungen standhält. Der Einsatz des 3D-Druxckers bei mdexx, kombiniert mit dieser vielseitigen Materialauswahl, unterstreicht unser Engagement für innovative Technologien und effiziente Produktionsprozesse. Wir sind in der Lage, unseren Kunden hochwertige, maßgeschneiderte Produkte und Lösungen zu bieten, die auf höchste Präzision und Leistung ausgelegt sind.
3D-Druck aus Metall

3D-Druck aus Metall

Der 3D-Druck aus Metall bei Protoland bietet eine innovative Lösung für die Herstellung von Prototypen und komplexen Konstrukten. Diese Technologie kombiniert die Flexibilität des 3D-Drucks mit den robusten Eigenschaften von Metall, was sie ideal für die Produktion von Gussformen, Werkzeugen und Ersatzteilen macht. Der 3D-Druck aus Metall ermöglicht die präzise Fertigung von Bauteilen mit minimaler Nachbearbeitung, was die Kosten senkt und die Produktionszeiten verkürzt. Dank der Möglichkeit, komplexe Geometrien zu drucken, können Einzelteile eingespart und die Effizienz gesteigert werden. Es stehen verschiedene Herstellungsverfahren zur Verfügung, darunter das selektive Lasersintern (SLS), das Laserschmelzen (SLM) und das Metall-Binder-Jetting. Jedes Verfahren bietet spezifische Vorteile in Bezug auf Stabilität, Detailgenauigkeit und Materialauswahl. Typische Metalle für den 3D-Druck sind Aluminium, Titan, Edelstahl und Kobalt-Chrom-Legierungen. Diese Materialien zeichnen sich durch hervorragende mechanische Eigenschaften, Korrosionsbeständigkeit und Wärmeleitfähigkeit aus. Vertrauen Sie auf unsere Expertise im 3D-Druck aus Metall, um Ihre Projekte schnell und effizient zu realisieren.
RPK* (Zylinderbuchse | Stahl + PEEK)

RPK* (Zylinderbuchse | Stahl + PEEK)

Beim Typ der RP®-Gruppe handelt es sich um gerollte Gleitlager aus korrosions-geschütztem Stahl, einer Sinterbronzeschicht und einer durch LAMA modifizierten Gleitschicht aus Acetal- Copolymer (POM) mit eingeprägten Schmiertaschen. Sie werden in Anlehnung an DIN ISO 3547 gefertigt. Die RP®-Gleitlager sind für Einsatz-Anwendungen mit ungünstigen Schmierbedingungen vorgesehen und die Schmiertaschen müssen vor dem Einbau initial mit Schmierstoff gefüllt werden. Es wird keine permanente zusätzliche Schmierung notwendig, aber die Anwesenheit oder Zufuhr von Fett verlängert die Lebensdauer des Gleitlagers. Zum Schutz des Gleitlagers in schmutzintensiven Umgebungen empfehlen wir optional die Verwendung von Dichtungen. Bei der RPK* (Zylinderbuchse | Stahl + PEEK) handelt es sich um ein dünnwandiges Verbundgleitlager aus verzinntem Stahlträger und einer Gleitschicht aus PEEK nach DIN 1494 ISO 3547, wartungsfrei EIGENSCHAFTEN - geeignet für Trockenlauf und rauer Umgebung - für oszillierende und rotierende Bewegungen, auch bei niedriger Geschwindigkeit - optimal für höher Lastgefüge - geeignet für hohe Umgebungstemperaturen bis 300° - geringe Reibung, hohe Lebensdauer und niedriger Verschleiß, selbst bei geringer Schmierung - Stoß-unempfindlich und sehr gute Dämpfungseigenschaften - Korrosions-geschützter Träger (verzinnt oder verkupfert) - weitgehend chemisch beständig und REACH-/RoHS-konform ANWENDUNGSBEREICHE - in sauberer bis stark verschmutzter Umgebung - Hochlast-Anwendungen -Hochtemperatur-Anwendung - Land- und Forstwirtschaft - Automobilbereich - Schienenfahrzeuge - Marinetechnik - allgemeiner Maschinenbau
Rohrkettenförderer - Schrage CLASSIC

Rohrkettenförderer - Schrage CLASSIC

Die Möglichkeit, Rohrkettenförderer zu konfigurieren, bietet Unternehmen die Flexibilität, ihre Fördersysteme an die spezifischen Anforderungen ihrer Prozesse anzupassen. Mit verschiedenen Baugrößen und Ausführungen können Unternehmen sicherstellen, dass sie die optimale Lösung für ihre Schüttgutförderung erhalten. Die Konfiguration ermöglicht es, die Förderleistung, Linienführung und Materialauswahl genau auf die Bedürfnisse des Unternehmens abzustimmen. Die Vorteile der Konfiguration von Rohrkettenförderern sind zahlreich: Unternehmen können sicherstellen, dass sie die richtige Lösung für ihre spezifischen Anforderungen erhalten. Dies führt zu einer höheren Effizienz und Produktivität in der Schüttgutverarbeitung. Die Möglichkeit zur Konfiguration ist ein wichtiger Aspekt für Unternehmen, die in der Schüttgutindustrie tätig sind und Wert auf maßgeschneiderte Lösungen legen.
Rohrschleifmaschine MLW 100 3Z

Rohrschleifmaschine MLW 100 3Z

Vielseitiges Schleifen & intuitive Bedienung Die ML & MLW 100 Z Serie umfasst leistungsstarke Multi-Stationen-Rohrschleifmaschinen mit bis zu 6 Schleifstationen für Durchmesser von 4 bis 350 mm. Die Maschinen ermöglichen trockenes oder nasses Schleifen und können mit Beladesystemen wie Roboter, Stangen- oder Bündellader ausgestattet werden. Dank der Multi-Stationen wird der gesamte Arbeitsprozess für ein perfektes Oberflächenfinish in nur einem Arbeitsgang erledigt. Die Bedienung ist benutzerfreundlich und erfordert keine spezielle Schulung: Programme können einfach auf dem Touchscreen-Panel erstellt & abgespeichert werden.
MICRO-DRUCKSENSOREN, Honeywell Micro-Drucksensoren der MPR-Serie,  Silizium-Drucksensoren

MICRO-DRUCKSENSOREN, Honeywell Micro-Drucksensoren der MPR-Serie, Silizium-Drucksensoren

Honeywell Micro-Drucksensoren der MPR-Serie. Bei der MPR-Serie handelt es sich um piezoresistive Silizium-Drucksensoren mit Digitalausgang zum Einlesen des Drucks über den gesamten angegebenen Druck- und Temperaturbereich. Die Serie ist vollständig kalibriert und gleicht Abweichungen bei Messwandlern, Empfindlichkeit, Temperaturauswirkungen und Nichtlinearität mithilfe eines integrierten anwendungsspezifischen Schaltkreises (Application Specific Integrated Circuit, ASIC) aus. Dieses Produkt wurde entwickelt, um die Anforderungen von Medizingeräten (für Endverbraucher und Fachkunden), die in großen Mengen produziert werden, und von kommerziellen Geräteanwendungen zu erfüllen. Mehrwert für die Kunden Sehr kleiner Formfaktor: Ermöglicht Tragbarkeit durch optimiertes Gewicht, Größe und begrenzte Abmessungen; einfache Integration; nimmt weniger Raum auf der Platine ein. Breiter Druckbereich vereinfacht die Anwendung. Verbessert die Leistung: Der Ausgang beschleunigt die Leistung durch geringeren Umrechnungsbedarf und eine direkte Schnittstelle zu Mikroprozessoren. Werthaltige Lösung: Kosteneffektive Lösung für die Massenfertigung mit einstellbaren Optionen. Erfüllt IPC-/JEDEC J-STD-020D.1 Feuchteempfindlichkeitsanforderungen Stufe 1: Ermöglicht die Vermeidung thermischer und mechanischer Schäden während des Aufschmelzlötens und/oder der Reparatur, die geringer bewertete Sensoren erleiden könnten; ermöglicht unbegrenzte Haltbarkeit gemäß Spezifikation (vereinfachte Lagerung und Reduzierung des Ausschusses); eliminiert lange Erwärmungszeiten vor dem Aufschmelzen und ermöglicht eine schlanke Produktion aufgrund der Stabilität und Einsetzbarkeit kurz nach dem Aufschmelzen. Niedrigenergie / Energieeffizienz: Verringert die Energieanforderungen des Systems und ermöglicht eine verlängerte Batteriehaltbarkeit. Differenzierungsmerkmal: Eine anwendungsspezifische Auslegung ermöglicht spezifische Anforderungen und Herausforderungen einer Anwendung. Digitaler Ausgang: Der Plug-and-Play-Betrieb ermöglicht eine einfachere Integration und Konnektivität auf dem Systemniveau. Gesamtfehlertoleranz: Bietet echte Leistung aufgrund des ausgeglichenen Temperaturbereichs, durch den der Bedarf für Tests und Kalibrierungen an jedem Sensor minimiert wird. Dadurch werden die Herstellungskosten potenziell reduziert; die Sensorgenauigkeit wird verbessert und es besteht eine einfache Austauschbarkeit aufgrund minimaler Unterschiede zwischen den Teilen.