Finden Sie schnell 3 achs fräse für Ihr Unternehmen: 271 Ergebnisse

Erodierbohrmaschine / Erodierbohranlage  BT-2 CNC

Erodierbohrmaschine / Erodierbohranlage BT-2 CNC

- Anspruchsvolle Anwendungen brauchen leistungsfähige Anlagen - Bohrungen mit Elektroden von Ø 0,2 bis 4 mm in:gehärteten Stahl, Hartmetall, VA-Stahl, Kupfer, Messing, Aluminium - CNC-Streckensteuerung bis 8 Achsen - USB, LAN - Antast und Positionierzyklen - Elektronisches Handrad - Motorisch verstellbare W-Achse (Grobverstellung) - Servogesteuerte Z-Achse - Impulsgenerator ist im Anlagenunterbau integriert - Generatorparameter können nach Technologie oder frei wählbar eingestellt werden - Elektroden bis 400 mm Länge - Filteraggregat sorgt für sauberes Medium (wichtig für kleine Elektroden) - C-Box für Hartmetallbearbeitung - Booster bis 8,0 mm - Erhöhung der Rachenweite - Rundtische T isch-Aufsp annfläche: 600 x 300 mm: Max. Werkstückhöhe: 350 mm Kreuztisch - Koordinatenweg X: 350 mm: Kreuztisch - Koordinatenweg Y: 250 mm V erstellbereich W -Achse (motorisch): 200 mm: servogesteuerte Erodierachse Z: 0,01 - 330 mm
GRIFF DREHBAR GR.3 D=M10X11, D1=28, DUROPLAST SCHWARZ HOCHGLANZPOLIERT, KOMP:...

GRIFF DREHBAR GR.3 D=M10X11, D1=28, DUROPLAST SCHWARZ HOCHGLANZPOLIERT, KOMP:...

Werkstoff: Duroplast PF 31, schwarz. Achse und Gewindehülse Stahl, verzinkt oder Edelstahl, blank. Ausführung: hochglanzpoliert. Bestellbeispiel: K0170.105007 Hinweis: Zur Montage Achse ausschrauben.
GRIFF DREHBAR GR.3 D=M10X11, D1=28, DUROPLAST SCHWARZ HOCHGLANZPOLIERT, KOMP:...

GRIFF DREHBAR GR.3 D=M10X11, D1=28, DUROPLAST SCHWARZ HOCHGLANZPOLIERT, KOMP:...

Werkstoff: Duroplast PF 31, schwarz. Achse und Gewindehülse Stahl, verzinkt oder Edelstahl, blank. Ausführung: hochglanzpoliert. Bestellbeispiel: K0170.105007 Hinweis: Zur Montage Achse ausschrauben.
FLÜGELGRIFF MINIWING M04, FORM:D INNENGEWINDE DURCHGEHEND, A=28, H=14,3, THER...

FLÜGELGRIFF MINIWING M04, FORM:D INNENGEWINDE DURCHGEHEND, A=28, H=14,3, THER...

Technische Emotion spielte bei der Entwicklung dieses kleindimensionierten Flügelgriffs eine wesentliche Rolle. Als Resultat ist Miniwing weit mehr als Mittel zum Zweck. Er ist ein vernunftbetontes Bedien- und Arbeitsteil mit einer fingerspezifischen Ergonomie. Werkstoff: Griff Thermoplast. Buchse aus Stahl 5.8 oder Edelstahl 1.4305. Ausführung: Griff schwarzgrau. Stahl blau chromatiert. Edelstahl blank. Bestellbeispiel: K0658.1004
FLÜGELGRIFF MINIWING M04, FORM:D INNENGEWINDE DURCHGEHEND, A=28, H=14,3, THER...

FLÜGELGRIFF MINIWING M04, FORM:D INNENGEWINDE DURCHGEHEND, A=28, H=14,3, THER...

Technische Emotion spielte bei der Entwicklung dieses kleindimensionierten Flügelgriffs eine wesentliche Rolle. Als Resultat ist Miniwing weit mehr als Mittel zum Zweck. Er ist ein vernunftbetontes Bedien- und Arbeitsteil mit einer fingerspezifischen Ergonomie. Werkstoff: Griff Thermoplast. Buchse aus Stahl 5.8 oder Edelstahl 1.4305. Ausführung: Griff schwarzgrau. Stahl blau chromatiert. Edelstahl blank. Bestellbeispiel: K0658.1004
FIVE STAR THM-Serie - Doppelkopffräsmaschine

FIVE STAR THM-Serie - Doppelkopffräsmaschine

Die hochproduktive THM Serie eignet sich zum Bearbeiten von Werkstücken in hoher Qualität. Die Maschinen der THM-Serie kann alle 4 Flächen vollautomatisch bearbeiten, ohne Umspannung des Materials. Die Maschinen überzeugen mit einer hohen Parallelität und Winkelgenauigkeit. Parallelität wird durch die gleichzeitige Bearbeitung an zwei Seiten mit gleicher Spantiefe erreicht. Die Werkstücke werden über hydraulisch betätigte Spanner fixiert, dabei kann die Spannkraft in verschiedenen Stufen eingestellt werden. Die Werkstückspanner lassen sich einfach wechseln, dies sorgt für kurze Rüstzeiten. Die Vorteile dieser Serie im Überblick: - niedrige Fehlerquote durch automatisches Einmessen - geringere Toleranzen sind möglich, durch automatisches Drehen - Kurze Rüstzeiten und einfache Rüstvorgänge
Flachdichtung GORE® Universelle Rohrleitungsdichtung (Style 800)

Flachdichtung GORE® Universelle Rohrleitungsdichtung (Style 800)

Geeignet für Stahlflanschen, Kunststoffflanschen, Stahl-Email-Flanschen und ausgekleidete Flanschen. Die maximale Druckbeaufschlagung und Betriebstemperatur hängen vom verwendeten Flanschtyp ab. Die universelle Rohrleitungsdichtungen Style 800 von GORE® wurde entwickelt, um den Anforderungen einer zuverlässigen Abdichtung nahezu aller Flanschtypen gerecht zu werden. Somit können die Dichtungen in allen Normflanschen der chemischen Industrie eingesetzt werden. Die Dichtung eignet sich gerade für umfassende Anwendungsstandardisierung wie Stahlflansche, Stahl-Email-Flansche und Kunststoffflansche. Style 800 zeichnet sich als universelle Rohrleitungsdichtung vor allem durch eine minimal notwendige Flächenpressung und deutlich reduzierte Kriech-Relaxation aus. GORE® Style 800 ist eine Dichtung für alle Normflansche (DIN und ANSI).
Filamentdruck

Filamentdruck

Im Bereich Filamentdruck betreiben wir eine stetig wachsende Flotte an 3D-Druckern der Typen Ultimaker S5 und sowie Ultimaker 3 Extended. Alle Maschinen arbeiten vernetzt in der Cloud. Ein Großteil der Maschinen ist voll-umhaust, sodass in einer Vielzahl verschiedener Konfigurationen fast alle verfügbaren Filament-Typen gedruckt werden können.
FILAMENT TROCKENOFEN SLW-115

FILAMENT TROCKENOFEN SLW-115

Die SLW-Serie ist ein Trockenofen zu trocknen von 3D Druck Filament und der thermischen Nachbehandlung von Kunststoffen im Temperaturbereich von bis +300°C. Die erzwungene Luftzirkulation besteht in der Verwendung eines Ventilators in der Arbeitskammer, der die Luft gleichmäßig in der Innenkammer verteilt. Dadurch arbeitet das Gerät stabil und erreicht die benutzerdefinierte Temperatur schneller, auch bei hoher Kammerfüllung.
3D-Metalldruck, 3D Druck Metall, Designfreiheit- komplexe Strukturen-maßgeschneiderte Lösungen

3D-Metalldruck, 3D Druck Metall, Designfreiheit- komplexe Strukturen-maßgeschneiderte Lösungen

RAWE 3D-Metalldruck | Hersteller von robusten Funktionsmustern in Rekordzeit | Designfreiheit- komplexe Strukturen-maßgeschneiderte Lösungen Wieso RAWE 3D Metalldruck GmbH? Wir können: > Fertigungsgerechte Konstruktion der Bauteile > Übertragung des CAD Modells zur optimalen Ausrichtung des Baujobs > Bauteilerstellung mittels 3D Metalldruck > Selektives Laserschmelzen Nachbearbeitung Als Experten für umformende, trennende und fügende, sowie zerspanende Verfahren ist die Nachbearbeitung der Bauteile bei unserem Partner Kaiser Prototypenbau in den besten Händen. Bauteile mit signifikanter Gewichtsersparnis bei gleicher Festigkeit, vereinfachte Produktion komplexer Strukturen - die Möglichkeiten sind fast unendlich. 3D Metalldruck | 3D Druck Metall | Metall 3D Druck
3D-Metalldruck, 3D Druck Metall Designfreiheit- komplexe Strukturen-maßgeschneiderte Lösungen

3D-Metalldruck, 3D Druck Metall Designfreiheit- komplexe Strukturen-maßgeschneiderte Lösungen

RAWE 3D-Metalldruck | Hersteller von robusten Funktionsmustern in Rekordzeit | Designfreiheit- komplexe Strukturen-maßgeschneiderte Lösungen Wieso RAWE 3D Metalldruck GmbH? Wir können: > Fertigungsgerechte Konstruktion der Bauteile > Übertragung des CAD Modells zur optimalen Ausrichtung des Baujobs > Bauteilerstellung mittels 3D Metalldruck > Selektives Laserschmelzen Nachbearbeitung Als Experten für umformende, trennende und fügende, sowie zerspanende Verfahren ist die Nachbearbeitung der Bauteile bei unserem Partner Kaiser Prototypenbau in den besten Händen. Bauteile mit signifikanter Gewichtsersparnis bei gleicher Festigkeit, vereinfachte Produktion komplexer Strukturen - die Möglichkeiten sind fast unendlich. 3D Metalldruck | 3D Druck Metall | Metall 3D Druck
3D-Druckdienstleistungen

3D-Druckdienstleistungen

Kunststoff-Bauteile bis zu 800mm Größe, in verschiedenen Materialien. Gerne beraten wir Sie im Vorfeld
Platten aus Acrylglas

Platten aus Acrylglas

Acrylglasplatten(PMMA) Polycarbonat Platten(PC) PTFE-Teflon Platten Baukunststoffe Kompaktplatten Stegplatten PE1000 Platten Gummiplatten Gummizuschnitte Dichtungen Stanzteile
Resindruck

Resindruck

Im Bereich Resindruck arbeiten wir mit Druckern der Hersteller Anycubic und Elegoo, welche verschieden große Bauflächen zur Verfügung stellen. Durch die Verwendung verschiedener Resinmischungen mit Additiven können wir nicht nur Teile mit extrem glatten Oberflächen herstellen, sondern auch Stabilität und Bruch-Anfälligkeit entscheidend beeinflussen.
Plexiglasrohre

Plexiglasrohre

PLEXIGLASROHRE UND PLEXIGLASSTÄBE Selbstverständlich können Plexiglasrohre sowie Plexiglasstäbe aus PLEXIGLAS® XT und PLEXIGLAS® GS mit den gleichen positiven Eigenschaften aufwarten, wie die Plexiglasscheiben und Plexiglasplatten: Sie sind transparent, in hohem Maße lichtdurchlässig und überzeugen natürlich auch durch ihre Brillanz, die gleichbleibende Materialstärke und eine glatte Oberfläche. Bei der Bearbeitung zeigt sich PLEXIGLAS® unkompliziert: Rundstäbe lassen sich einfach warmbiegen und formen sowie polieren und bohren. Die Rohre können in der Weiterverarbeitung mit einem passenden Kleber verklebt werden oder lassen sich gut durchbohren und danach zum Beispiel verschrauben. Das Material ist bruchfest und zeigt sich unkompliziert im Zusammenspiel mit anderen Materialien. Dank dieser herausragenden Eigenschaften eignen sich Rohre und Stäbe aus PLEXIGLAS® für eine Vielzahl von Anwendungsbereichen. In der Industrie werden Plexiglasrohre zudem häufig für die Erstellung pneumatischer Fördersysteme oder auch Rohrpost-Systeme verwendet. Die farblosen Plexiglasrohre sind außerdem lebensmittelkonform und können daher beispielsweise auch für den Ladenbau verwendet werden. Auch für die Herstellung von repräsentativen Präsentationsdisplays und weiterer Objekte im Messe-, Möbel- und Ladenbau bilden Plexiglasrohre eine gute Basis. Und selbst für den Modellbau und Laboranwendungen eignen sich die flexibel einsetzbaren Rohre aus PLEXIGLAS® XT und GS. ROHRE UND STÄBE AUS PLEXIGLAS® XT Die Plexiglasrohre vom Typ XT werden aus extrudiertem Material gefertigt. Das heißt, es handelt sich um Rohre aus PLEXIGLAS® XT. Während des Herstellungsprozesses wird Polymethylmethacrylat-Granulat, also bereits polymerisiertes Methylmethacrylat, in einem Extruder geschmolzen und dann in die runde Form gepresst. Auf diese Weise lassen sich sowohl Rohre als auch massive Rund- und Vierkantstäbe mit unterschiedlichen Durchmessern herstellen. PLEXIGLASROHRE: EINE RUNDE SACHE Bei der Geißler GmbH & Co. KG finden Sie eine große Auswahl an Plexiglasrohren und -stäben. Im Sortiment befinden sich PLEXIGLAS® XT Rohre mit einem Durchmesser von 7 mm bis 500 mm sowie Rundstäbe und Vierkantstäbe in verschiedenen Stärken.
CREALITY K1 MAX

CREALITY K1 MAX

Genau wie der K1-Drucker erreicht der K1 Max eine neue Druckgeschwindigkeit, jedoch mit einem großen Bauvolumen von 300 x 300 x 300 mm. Der K1 Max verwendet eine KI-Kamera zur Überwachung von Spaghetti-Fehlern, Fremdkörpern, Ablagerungen usw. Sie warnt Dich, wenn ein Fehler auftritt. Highligts: 600mm/s Druckgeschwindigkeit Vielseitiges AI LiDAR Aufmerksame AI-Kamera Großes Bauvolumen:300*300*300mm
DLP Digital Light Processing für hohe Details und Oberflächen

DLP Digital Light Processing für hohe Details und Oberflächen

Mittels Digital Light Processing werden extrem detailreiche, präzise Modelle im 3D Druckverfahren hergestellt. DLP wird zumeist in der Schmuckindustrie oder dem Prototypenbau verwendet. Auch für die Herstellung von Kunst – beispielsweise kleine Skulpturen – eignet sich das Verfahren hervorragend. Auch im Modellbau oder für Table Top Spiele werden detailgetreue Modelle mittels Digital Light Processing gefertigt. Da das Digital Light Processing auf Materialien angewiesen ist, die unter Lichteinstrahlung ihr Gefüge ändern und somit aushärten, ist die Auswahl an Materialien überaus begrenzt. Aktuell werden Photopolymere in flüssiger Form eingesetzt. Diese Kunststoffe können allerdings mit keramischen Materialien vermengt werden. Die Vorteile des Verfahrens liegen eindeutig in der Geschwindigkeit. Bei großen Drucken mit voller Dichte wird jede Schicht schneller belichtet, als es bei Verfahren mit Laser der Fall ist. Vorteile: - Kompakte Bauform - Schneller Druck Unsere Genauigkeit mit dem DLP Verfahren liegt bei 5 μm mit einer sehr feinen Oberflächenglätte.
3D-Druck Schnittmodell

3D-Druck Schnittmodell

Mit dem ZPrinter Projet660 erstellen wir maßstabsgetreue Modelle aus Ihren Daten. Einfarbig oder mit Millionen von Farben! Und das in kürzester Zeit.
3D-DRUCK

3D-DRUCK

Mit dem 3D-Druck-Verfahren können wir Prototypen und Kleinserien qualitativ hochwertig, kostengünstig und schnell anfertigen. Wir fertigen für Sie Modelle, Muster, Prototypen, Werkzeuge und Endprodukte.
Mini-Greifzangen

Mini-Greifzangen

Mini-Greifzangen für sehr kleine Angüsse und Werkstücke Kompatibel mit allen gängigen Greifersystemen - Magnetsensor für Teileabfrage als Option - Klemmdurchmesser 10 mm Klemmdurchmesser: 10 mm
LIFESTYLEBOARD A2 NICHT BRENNBAR

LIFESTYLEBOARD A2 NICHT BRENNBAR

Gipsfaser A1 für den Innenbereich gemäß DIN EN 13501-1 A2-s1-d0 Digitaler Direktdruck auf nicht brennbarer A1-Gipsfaserplatte Einseitig digital bedruckt, Oberflächenveredelung mit UV-Lack, Rückseite mit Gegenzug weiß Abriebfest, kratzfest, chemikalienbeständig, farbstabil, und lebensmittelecht Passgenauigkeit an den Stößen bei fortlaufenden Bildabwicklungen Verwendung von UV-Lacken mit VOC-Anteil unter 1% Standardformat: 3.040 x 1.260 x 18,4 mm
Polygrafie / Polyjet-/ Inkjet-Verfahren

Polygrafie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer AR-M2: Lange Haltbarkeit, flexibel, formstabil, lackier- und einfärbbar, hohe Festigkeit Nachteile:: Photopolymer AR-M2: Geringe Temperaturbeständigkeit Farben:: Photopolymer AR-M2: Transparent (Gelbstich) Bauteilgenauigkeit:: Photopolymer AR-M2: ~ 200 µm Zugfestigkeit RM:: Photopolymer AR-M2: 40 – 55 MPa Max. Betriebstemperatur:: Photopolymer AR-M2: 54 °C Härte:: Photopolymer AR-M2: 86 Shore D Min. Wandstärke:: Photopolymer AR-M2: 0,5 mm Schichtstärke:: Photopolymer AR-M2: 0,015 mm Max. Bauraumgröße:: Photopolymer AR-M2: 297 x 210 x 200 mm
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer VeroClear RGD 810: Glatte Oberfläche, lange Haltbarkeit, lackierbar Nachteile:: Photopolymer VeroClear RGD 810: Nicht als Serienbauteil geeignet Farben:: Photopolymer VeroClear RGD 810: Transparent milchig Bauteilgenauigkeit:: Photopolymer VeroClear RGD 810: ~ 300 µm Zugfestigkeit RM:: Photopolymer VeroClear RGD 810: 50 - 65 MPa Max. Betriebstemperatur:: Photopolymer VeroClear RGD 810: 45 - 50 °C Härte:: Photopolymer VeroClear RGD 810: 83 Shore D Min. Wandstärke:: Photopolymer VeroClear RGD 810: 0,5 mm Schichtstärke:: Photopolymer VeroClear RGD 810: 0,016 mm Max. Bauraumgröße:: Photopolymer VeroClear RGD 810: 340 x 340 x 200 mm
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer AR-H1 ungetempert: Lange Haltbarkeit, lackier- und einfärbbar Nachteile:: Photopolymer AR-H1 ungetempert: Spröde Farben:: Photopolymer AR-H1 ungetempert: Transparent (Rotstich) Bauteilgenauigkeit:: Photopolymer AR-H1 ungetempert: ~ 200 µm Zugfestigkeit RM:: Photopolymer AR-H1 ungetempert: 16,1 – 31,4 MPa Max. Betriebstemperatur:: Photopolymer AR-H1 ungetempert: 72 °C Härte:: Photopolymer AR-H1 ungetempert: 87 Shore D Min. Wandstärke:: Photopolymer AR-H1 ungetempert: 1,5 mm Schichtstärke:: Photopolymer AR-H1 ungetempert: 0,02 mm Max. Bauraumgröße:: Photopolymer AR-H1 ungetempert: 297 x 210 x 200 mm
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer AR-H1 getempert: Lange Haltbarkeit, lackier- und einfärbbar Nachteile:: Photopolymer AR-H1 getempert: Spröde Farben:: Photopolymer AR-H1 getempert: Transparent (Rotstich) Bauteilgenauigkeit:: Photopolymer AR-H1 getempert: ~ 200 µm Zugfestigkeit RM:: Photopolymer AR-H1 getempert: 15,4 – 38,4 MPa Max. Betriebstemperatur:: Photopolymer AR-H1 getempert: 103 °C Härte:: Photopolymer AR-H1 getempert: 87 Shore D Min. Wandstärke:: Photopolymer AR-H1 getempert: 1,5 mm Schichtstärke:: Photopolymer AR-H1 getempert: 0,02 mm Max. Bauraumgröße:: Photopolymer AR-H1 getempert: 297 x 210 x 200 mm
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer VeroWhite Plus RGD 835: Glatte Oberfläche, lange Haltbarkeit, lackierbar Nachteile:: Photopolymer VeroWhite Plus RGD 835: Nicht als Serienbauteil geeignet Farben:: Photopolymer VeroWhite Plus RGD 835: Weiß Bauteilgenauigkeit:: Photopolymer VeroWhite Plus RGD 835: ~ 300 µm Zugfestigkeit RM:: Photopolymer VeroWhite Plus RGD 835: 50 - 65 MPa Max. Betriebstemperatur:: Photopolymer VeroWhite Plus RGD 835: 45 - 50 °C Härte:: Photopolymer VeroWhite Plus RGD 835: 83 Shore D Min. Wandstärke:: Photopolymer VeroWhite Plus RGD 835: 0,5 mm Schichtstärke:: Photopolymer VeroWhite Plus RGD 835: 0,016 mm Max. Bauraumgröße:: Photopolymer VeroWhite Plus RGD 835: 302 x 280 x 150 mm
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Tango Black FLX 973: Gummiartiges Aussehen und Eigenschaften Nachteile:: Tango Black FLX 973: Kann über die Zeit spröde werden Farben:: Tango Black FLX 973: Schwarz Bauteilgenauigkeit:: Tango Black FLX 973: ~ 300 µm Zugfestigkeit RM:: Tango Black FLX 973: 2 MPa Max. Betriebstemperatur:: Tango Black FLX 973: keine Angabe Härte:: Tango Black FLX 973: 61 Shore A Min. Wandstärke:: Tango Black FLX 973: 1 mm Schichtstärke:: Tango Black FLX 973: 0,016 mm Max. Bauraumgröße:: Tango Black FLX 973: 302 x 280 x 150 mm
3D-Druck Service vom Einzelteil bis zur Kleinserie

3D-Druck Service vom Einzelteil bis zur Kleinserie

3D-Druck vom Einzelstück bis zur Kleinserie zu fairen Preisen. - Stabile Bauteilen im (FDM) Verfahren aus verschiedenen Materialien. - Hochdetailierte Bauteile im SLA / DLP Verfahren.
AUS 2D-ZEICHNUNG WIRD 3D-MODELL

AUS 2D-ZEICHNUNG WIRD 3D-MODELL

Wir machen den Brückenschlag von 2D zu 3D und wandeln Ihre Daten um. So steht einer 3D-Modellierung nichts im Weg. Es liegen keine 3D-Daten vor? Kein Problem. Wir machen den Brückenschlag von 2D zu 3D und wandeln Ihre Daten um. So steht einer 3D-Modellierung nichts im Weg. Ihre Ersatzteile bleiben kontinuierlich verfügbar.
CJP: Vollfarb-3D-Drucker von 3D Systems

CJP: Vollfarb-3D-Drucker von 3D Systems

Erschwingliche, fotorealistische Vollfarbteile aus 3D-Druckern des Typs ProJet® CJP Die 3D-Drucker der Produktreihe ProJet CJP x60 von 3D Systems, die für ihre unvergleichlichen Farbfähigkeiten bekannt sind, liefern schnellere Modelle zu niedrigen Betriebskosten. Hochwertiger 3D-Vollfarbdruck mit außergewöhnlicher Druckgeschwindigkeit und Effizienz bedeutet, dass die 3D-Drucker der Produktreihe ProJet CJP x60 von 3D Systems für vielseitige Anwendungszwecke sowohl im pädagogischen Bereich als auch in anspruchsvollen kommerziellen Produktionsumgebungen geeignet sind.